挑战图像处理100问(15)——Sobel滤波器

在这里插入图片描述
Author:Tian YJ

Sobel滤波器

Sobel算子是一种典型的用于边缘检测的线性滤波器,它基于两个简单的3*3内核,滤波器按下式定义:

纵向:
K = [ 1 2 1 0 0 0 − 1 − 2 − 1 ] K=\left[ \begin{matrix} 1&2&1\\ 0&0&0\\ -1&-2&-1 \end{matrix} \right] K=101202101
横向:
K = [ 1 0 − 1 2 0 − 2 1 0 − 1 ] K=\left[ \begin{matrix} 1&0&-1\\ 2&0&-2\\ 1&0&-1 \end{matrix} \right] K=121000121
如果把图像看做二维函数,那么sobel算子就是图像在水平和垂直方向变化的速度。在数学属于中,这种速度称为梯度。它是一个二维向量,向量的元素是横竖两个方向的函数的一阶导数:
g r a d ( I ) = [ ∂ I ∂ x ∂ I ∂ y ] T grad(I)=\left[ \begin{matrix} \frac{\partial I}{\partial x}&\frac{\partial I}{\partial y}\\ \end{matrix} \right] ^T grad(I)=[xIyI]T
sobel算子在水平和垂直方向计算像素值的差分,得到图像梯度的近似值。它在像素周围的一定范围内进行运算,以减少噪声带来的影响。

代码实现
import cv2 # 我只用它来做图像读写和绘图,没调用它的其它函数哦
import numpy as np # 进行数值计算

# padding 函数
def padding(img, K_size=3):
	# img 为需要处理图像
	# K_size 为滤波器也就是卷积核的尺寸,这里我默认设为3*3,基本上都是奇数

	# 获取图片尺寸
	H, W, C = img.shape

	pad = K_size // 2 # 需要在图像边缘填充的0行列数,
	# 之所以我要这样设置,是为了处理图像边缘时,滤波器中心与边缘对齐

	# 先填充行
	rows = np.zeros((pad, W, C), dtype=np.uint8)
	# 再填充列
	cols = np.zeros((H+2*pad, pad, C), dtype=np.uint8)
	# 进行拼接
	img = np.vstack((rows, img, rows)) # 上下拼接
	img = np.hstack((cols, img, cols)) # 左右拼接

	return img

# Sobel 滤波器函数
def sobel_filter(img, K_size=3):

	# 获取图像尺寸
	H, W, C = img.shape

	# 进行padding
	pad = K_size // 2
	out = padding(img, K_size=3)

	# 纵向滤波器系数
	K_v = np.array([[1., 2., 1.],[0., 0., 0.], [-1., -2., -1.]])
	# 横向滤波器系数
	K_h = np.array([[1., 0., -1.],[2., 0., -2.],[1., 0., -1.]])

	# 进行滤波
	tem = out.copy()
	out_v = out.copy()
	out_h = out.copy()

	for h in range(H):
		for w in range(W):
			for c in range(C):
				out_v[pad+h, pad+w, c] = np.sum(K_v * tem[h:h+K_size, w:w+K_size, c], dtype=np.float)
				out_h[pad+h, pad+w, c] = np.sum(K_h * tem[h:h+K_size, w:w+K_size, c], dtype=np.float)

	out_v = np.clip(out_v, 0, 255)
	out_h = np.clip(out_h, 0, 255)

	out_v = out_v[pad:pad+H, pad:pad+W].astype(np.uint8)
	out_h = out_h[pad:pad+H, pad:pad+W].astype(np.uint8)

	return out_v, out_h

# 这里需要把图像先灰度化
# 直接用之前的灰度化代码
# 灰度化函数
def BGR2GRAY(img):

	# 获取图片尺寸
	H, W, C = img.shape

	# 灰度化
	out = np.ones((H,W,3))
	for i in range(H):
		for j in range(W):
			out[i,j,:] = 0.299*img[i,j,0] + 0.578*img[i,j,1] + 0.114*img[i,j,2]

	out = out.astype(np.uint8)

	return out

# 读取图片
path = 'C:/Users/86187/Desktop/image/'


file_in = path + 'cake.jpg' 
file_out_1 = path + 'cake_sobel_filter_v.jpg' 
file_out_2 = path + 'cake_sobel_filter_h.jpg'
img = cv2.imread(file_in)

# 调用函数进行灰度化
img = BGR2GRAY(img)
# 调用函数进行sobel滤波
out = sobel_filter(img)

# 保存图片
# 纵向
cv2.imwrite(file_out_1, out[0])
cv2.imshow("result", out[0])

# 横向
cv2.imwrite(file_out_2, out[1])
cv2.imshow("result", out[1])

cv2.waitKey(0)
cv2.destroyAllWindows()
结果展示
原图纵向横向
在这里插入图片描述在这里插入图片描述在这里插入图片描述
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值