应用连续高斯模糊后得到的σ是多少?

在这里插入图片描述
对图像应用多个连续的高斯模糊效果与应用单个较大的高斯模糊效果相同,后者的半径是实际应用的模糊半径的平方和的平方根。例如,应用半径为 6 6 6 8 8 8的连续高斯模糊与应用半径为 10 10 10的单个高斯模糊产生的结果相同,因为 6 2 + 8 2 = 10 \sqrt{6^2+8^2} =10 62+82 =10

但是我找不到任何证据,为什么会这样呢?

而且我还发现,在某些代码中,人们会考虑将两个连续的高斯模糊 σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2用只是一个模糊 σ = σ 1 2 + σ 2 2 \sigma=\sqrt{\sigma_1^2+\sigma_2^2} σ=σ12+σ22 代替。

我们如何证明这一结论?


证明如下:


可以使用一些简单的卷积理论来证明。首先,回想一下卷积: f ∗ ( g ∗ h ) = ( f ∗ g ) ∗ h f *(g * h)=(f * g) * h f(gh)=(fg)h
接下来回想一下高斯模糊图像 I I I就是简单地对高斯核函数 G G G进行卷积, G ( x , y ∣ σ ) = ( 2 π σ 2 ) − 1 exp ⁡ ( − x 2 + y 2 2 σ 2 ) G(x, y | \sigma)=\left(2 \pi \sigma^{2}\right)^{-1} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right) G(x,yσ)=(2πσ2)1exp(2σ2x2+y2)

所以高斯模糊两次就相当于卷积两次: I B = G 1 ∗ ( G 2 ∗ I ) = ( G 1 ∗ G 2 ) ∗ I = G ∗ I I_{B}=G_{1} *\left(G_{2} * I\right)=\left(G_{1} * G_{2}\right) * I=G * I IB=G1(G2I)=(G1G2)I=GI,我们知道 G G G是一个高斯核,因为两个高斯的卷积是一个高斯。

现在我们只需要证明: G ( x , y ∣ σ ) = G ( x , y ∣ σ 1 2 + σ 2 2 ) = G 1 ( x , y ∣ σ 1 ) ∗ G 2 ( x , y ∣ σ 2 ) G(x, y | \sigma)=G(x, y | \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}})=G_{1}\left(x, y | \sigma_{1}\right) * G_{2}\left(x, y | \sigma_{2}\right) G(x,yσ)=G(x,yσ12+σ22 )=G1(x,yσ1)G2(x,yσ2)

一种方法是通过定义:计算
G ( x , y ∣ σ ) = ∬ − ∞ ∞ G 1 ( τ , ξ ∣ σ 1 ) ∗ G 2 ( x − τ , y − ξ ∣ σ 2 ) d τ d ξ G(x, y | \sigma)=\iint_{-\infty}^{\infty} G_{1}\left(\tau, \xi | \sigma_{1}\right) * G_{2}\left(x-\tau, y-\xi | \sigma_{2}\right) d \tau d \xi G(x,yσ)=G1(τ,ξσ1)G2(xτ,yξσ2)dτdξ
这将最终等于期望的结果(参见)。

但是,有一些使用简单概率论的简便方法。回想一下,两个独立随机变量的总和给出了一个随机变量,其密度等于两个总和随机变量的卷积。如果 A ∼ N ( μ A , σ A 2 ) A \sim \mathcal{N}\left(\mu_{A}, \sigma_{A}^{2}\right) AN(μA,σA2) B ∼ N ( μ B , σ B 2 ) B \sim \mathcal{N}\left(\mu_{B}, \sigma_{B}^{2}\right) BN(μB,σB2)是独立的,那么 C = A + B C=A+B C=A+B A ∼ N ( μ A + μ B , σ A 2 + σ B 2 ) A \sim \mathcal{N}\left(\mu_{A}+\mu_{B}, \sigma_{A}^{2}+\sigma_{B}^{2}\right) AN(μA+μB,σA2+σB2)多元推广也是如此。

请注意,如果 X 1 ∼ N ( 0 , σ 1 2 I 2 ) X_{1} \sim \mathcal{N}\left(0, \sigma_{1}^{2} I_{2}\right) X1N(0,σ12I2), X 2 ∼ N ( 0 , σ 2 2 I 2 ) X_{2} \sim \mathcal{N}\left(0, \sigma_{2}^{2} I_{2}\right) X2N(0,σ22I2),那么它们有密度函数分别是 G 1 G_1 G1 G 2 G_2 G2。因此总和 Z = X 1 + X 2 Z=X_{1}+X_{2} Z=X1+X2具有 G = G 1 ∗ G 2 G=G_1*G_2 G=G1G2给出的密度函数。

但是我们知道 Z ∼ N ( 0 + 0 , σ 1 2 I 2 + σ 2 2 I 2 ) = N ( 0 , ( σ 1 2 + σ 2 2 ) I 2 ) Z \sim \mathcal{N}\left(0+0, \sigma_{1}^{2} I_{2}+\sigma_{2}^{2} I_{2}\right)=\mathcal{N}\left(0,\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) I_{2}\right) ZN(0+0,σ12I2+σ22I2)=N(0,(σ12+σ22)I2),因此, Z Z Z的密度函数为:
p Z ( z ) = 1 4 π 2 ∣ Σ ∣ exp ⁡ ( − 1 2 ( z − 0 ) T Σ − 1 ( z − 0 ) ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − 1 2 z T z [ σ 1 2 + σ 2 2 ] ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − x 2 + y 2 2 [ σ 1 2 + σ 2 2 ] ) = G ( x , y ∣ σ 1 2 + σ 2 2 ) = G ( x , y ∣ σ ) \begin{aligned} p_{Z}(z) &=\frac{1}{\sqrt{4 \pi^{2}|\Sigma|}} \exp \left(-\frac{1}{2}(z-0)^{T} \Sigma^{-1}(z-0)\right) \\ &=\frac{1}{2 \pi\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)} \exp \left(-\frac{1}{2} \frac{z^{T} z}{\left[\sigma_{1}^{2}+\sigma_{2}^{2}\right]}\right) \\ &=\frac{1}{2 \pi\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)} \exp \left(-\frac{x^{2}+y^{2}}{2\left[\sigma_{1}^{2}+\sigma_{2}^{2}\right]}\right) \\ &=G(x, y | \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}) \\ &=G(x, y | \sigma) \end{aligned} pZ(z)=4π2Σ 1exp(21(z0)TΣ1(z0))=2π(σ12+σ22)1exp(21[σ12+σ22]zTz)=2π(σ12+σ22)1exp(2[σ12+σ22]x2+y2)=G(x,yσ12+σ22 )=G(x,yσ)

这里 z = ( x , y ) z=(x, y) z=(x,y) and ∣ Σ ∣ = ∣ ( σ 1 2 + σ 2 2 ) I 2 ∣ = ( σ 1 2 + σ 2 2 ) 2 |\Sigma|=\left|\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) I_{2}\right|=\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2} Σ=(σ12+σ22)I2=(σ12+σ22)2

所以: σ = σ 1 2 + σ 2 2 \sigma=\sqrt{\sigma_1^2+\sigma_2^2} σ=σ12+σ22

[参考内容]
【1】内容1
【2】内容2
【3】内容3
【4】内容4
【5】内容5
【6】内容6

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值