LeetCode279:完全平方数

本文详细介绍了LeetCode第279题的解题思路和代码实现。通过数学分析,确定完全平方数的最少数量可能为1,2,3,4。利用排除法,给出不同情况的答案,并提供了代码实现及运行结果。" 113284999,10535706,C#连接MySQL数据库实战指南,"['C#开发', '数据库连接', 'MySQL数据库', 'SQL操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例1

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例2

输入:n = 13
输出:2
解释:13 = 4 + 9

二、解题思路

本题可以使用数学知识来解答:
任何正整数都可以拆分成不超过4个数的平方和,所以答案只可能是1,2,3,4

  1. 如果一个数最少可以拆成4个数的平方和,则这个数还满足 n = (4^a)*(8b+7),则答案为4
  2. 如果这个数本来就是某个数的平方,那么答案就是1
  3. 如果这个数是两个数的平方和,那么答案就是2
  4. 使用排除法,答案为3

三、代码实现

class Solution {
   public int numSquares(int n) {
        if (isPerfectSquare(n)) {
            return 1;
        }
        if (checkAnswer4(n)) {
            return 4;
        }
        for (int i = 1; i * i <= n; i++) {
            int j = n - i * i;
            if (isPerfectSquare(j)) {
                return 2;
            }
        }
        return 3;
    }

    // 判断是否为完全平方数
    public boolean isPerfectSquare(int x) {
        int y = (int) Math.sqrt(x);
        return y * y == x;
    }

    // 判断是否能表示为 4^k*(8m+7)
    public boolean checkAnswer4(int x) {
        while (x % 4 == 0) {
            x /= 4;
        }
        return x % 8 == 7;
    }

}

四、运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值