一、题目描述
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例1
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例2
输入:n = 13
输出:2
解释:13 = 4 + 9
二、解题思路
本题可以使用数学知识来解答:
任何正整数都可以拆分成不超过4个数的平方和,所以答案只可能是1,2,3,4
- 如果一个数最少可以拆成4个数的平方和,则这个数还满足 n = (4^a)*(8b+7),则答案为4
- 如果这个数本来就是某个数的平方,那么答案就是1
- 如果这个数是两个数的平方和,那么答案就是2
- 使用排除法,答案为3
三、代码实现
class Solution {
public int numSquares(int n) {
if (isPerfectSquare(n)) {
return 1;
}
if (checkAnswer4(n)) {
return 4;
}
for (int i = 1; i * i <= n; i++) {
int j = n - i * i;
if (isPerfectSquare(j)) {
return 2;
}
}
return 3;
}
// 判断是否为完全平方数
public boolean isPerfectSquare(int x) {
int y = (int) Math.sqrt(x);
return y * y == x;
}
// 判断是否能表示为 4^k*(8m+7)
public boolean checkAnswer4(int x) {
while (x % 4 == 0) {
x /= 4;
}
return x % 8 == 7;
}
}