边覆盖
Case Time Limit: 200 MS (Others) / 400 MS (Java) Case Memory Limit: 256 MB (Others) / 512 MB (Java)
Problem Description
对一个给定的无向图G(V,E),边集E'是E的子集。如果V中的所有顶点都在E'中出现过,那么称边集E'是图G的一个边覆盖(Edge Cover)。
(以上定义引自https://en.wikipedia.org/wiki/Edge_cover)
根据上面的定义,请判断一些给定的边集是否是给定的无向图的边覆盖。
Input
每个输入文件一组数据。
第一行为两个整数N、M(1<=N<=500, 1<=M<=N*(N-1)/2),分别表示无向图的顶点数和边数。假设图上的顶点编号为从1到N。
接下来M行,每行两个正整数u、v(1<=u,v<=N, u!=v),分别表示一条无向边的两个端点。数据保证没有重边。
接着一个正整数K(K<=10),表示查询的个数。
然后是K个查询,每个查询第一行为一个正整数L(L<=M),表示欲查询边集E'中的边数;接下来L行,每行两个整数,表示边集E'中的一条边。数据保证E'一定是E的子集。
Output
每个查询一行,如果欲查询边集E'不是图G的边覆盖,那么输出No
;否则输出Yes
。
Sample Input
6 7
1 2
1 3
2 3
2 4
3 5
4 5
4 6
3
3
1 2
3 5
4 6
4
1 2
2 3
4 5
4 6
3
1 2
2 3
4 6
Sample Output
Yes
Yes
No
Author
Shoutmon
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
vector<int> G[501];
int n,m,k;
bool vis[501]={false};
int main()
{
int a,b,num;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>a>>b;
G[a].push_back(b);
G[b].push_back(a);
}
cin>>k;
for(int i=0;i<k;i++)
{
fill(vis,vis+501,false);
cin>>num;
for(int j=0;j<num;j++)
{
cin>>a>>b;
vis[a]=true;
vis[b]=true;
}
int f=0;
for(int j=1;j<=n;j++)
if(vis[j]==false)
f=1;
if(f==0)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}