原理探究——空间平滑MUSIC算法

本文深入探讨了空间平滑MUSIC算法,解析了信号相干性与协方差矩阵的关系,以及矩阵秩的重要性。算法通过特征分解和谱函数构造,用于识别信号的到达角。在处理相干信号时,通过空间平滑恢复矩阵秩,有效区分信号子空间和噪声子空间,最终确定直达信号的来向角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  空间平滑MUSIC算法的核心在于:信号相干性与协方差矩阵的联系;同时与矩阵的秩、行列向量间线性相关/无关的联系

  MUSIC算法中阵列接收信号的表达式为:X=AS+N,A为空间阵列流型矩阵,即天线阵列的数学表达;S为空间信号矢量,即信号的数学表达;N为噪声。当信号不相干时,求得X的协方差矩阵为:
协方差矩阵

  此时发现Rs为满秩矩阵,且由于噪声N的存在,Rx也为满秩矩阵。这是因为协方差矩阵Rs中,每一个元素都在利用协方差公式计算不同信号间的相关程度!而当这些信号都是不相干的情况下,协方差矩阵Rs必然满秩。从而使得有噪声的情况下Rx也为满秩矩阵。而在证明了Rx矩阵的共轭转置等于它本身后, Rx同时也为厄米特矩阵

  由于厄米特矩阵有两个性质:1、所有特征值都为实数;2、不同特征值对应的特征向量是正交的。利用这些性质,可将Rx矩阵进行特征分解,通过特征值的属性来对特征向量进行筛选分类,划分出信号子空间与噪声子空间。最终利用两个子空间的正交性构造出谱函数,即可在天线接收的角度范围内进行谱峰搜索,找出各信号的来向角。

  讲到这里,再去看空间平滑算法处理相干信号的思路就很清晰透彻了。由于信号之间的相干性,如果直接计算阵列接收信号X(t)的协方差矩阵,会使得公式中的信号源矩阵Rs不再是满秩矩阵。而将Rx矩阵特征分解后划分的噪声子空间,也由于Rs矩阵出现的

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值