注意力机制:seq2seq with attention & transformer

引言

最近想要学习一下注意力机制,发现这又是一个大系列,得慢慢啃。大部分人接触注意力机制是因为 transformer,但在 NLP 领域,该机制早就被 Bahdanau et al., 2014Luong et al., 2015 等人提出,对应模型称为 seq2seq with attention。本文作为注意力机制的入门,将分别介绍这两种模型。


Seq2seq with Attention

sequence to sequence(seq2seq)是一类输入输出为序列数据(例如一句话,由单词组成)的模型,最为熟知的应用是语言翻译。以法语翻译到英语为例,seq2seq 由 encoder 和 decoder 组成,encoder 按顺序一个个读取单词,将整句话的语意信息编码成向量 context 送入 decoder,由 decoder 一个个生成翻译后的单词,其中 encoder 和 decoder 都是 RNN。
在这里插入图片描述
实际上 encoder 的每一步有两个输入,当前单词(实际上单词还要通过 word embedding 层获得对应向量)和 hidden state(hs),生成新的 hs,和下一个单词一起作为 encoder 下一步的输入,最后一步生成的 hs 就是上文提到的 context,我们认为 hs 保存了起始到当前位置所有单词的语意信息。decoder 也有自己的 hs,下图没有显式画出来。
在这里插入图片描述
当句子很长时,context 保存的语意接近当前单词,和远距离单词联系较弱,这成为了性能瓶颈。对此,人们在 decoder 中增加了 attention 机制,让 decoder 自己选择输入序列最关注的部分,此时的 context 是 encoder 所有时间点的 hs,decoder 在时间点 #t 的输出如下:

  1. 输入当前单词和 #t-1 hs,丢弃直接输出,保留 #t hs
  2. 计算 context 中各 hs 的权重 score,并对权重进行 softmax 正则化
  3. 利用 softmaxed score 对 context 进行加权平均,所得结果与 #t hs 连接起来
  4. 将连接后的 #t hs 送入前向网络,网络输出即为时间点 t decoder 的最终输出
    在这里插入图片描述

Transformer

RNN 只能串行计算,当序列很长时,有限的存储容量将限制 batch size 的大小,Transformer 提出了 self-attention 模块,该模块几乎取代了 RNN,实现了序列的并行计算,并大大提升了性能,self-attention 的思想也被引入到计算机视觉领域,在不同任务上取得了突破。transformer 由多层 encoder 和 decoder 组成,其中一层的结构如下图:
在这里插入图片描述
假设序列中的每一项称为 item,self-attention 使当前位置 item 能够综合所有位置 item 信息,因为作比较的 item 来自同一个序列,故称自注意力;encoder-decoder attention 使 decoder 中当前位置 item 综合 encoder 中所有位置 item 信息,故称互注意力

self-attention 计算

还是以翻译任务为例,假设当前输入是 word embedding 结果 x 1 , x 2 ∈ R d x_1,x_2 \in \mathbb{R}^d x1,x2Rd,第一步是计算每个输入的 query,key 和 value 向量,它们分别是 x x x 和矩阵 W Q , W K , W V W^Q,W^K,W^V WQ,WK,WV 的乘积,矩阵的值通过学习得到。
在这里插入图片描述
第二步是计算权重 score。假设要计算 x 1 x_1 x1 的 self-attention,那么需要计算所有 x i x_i xi 相对 x 1 x_1 x1 的权重,权重代表了在 encoding x 1 x_1 x1 时要对其他 x i x_i xi 给予多少关注。权重是 query 和 key 的点积,对于 x 1 x_1 x1 来说,第一个权重是 q 1 T k 1 q_1^T k_1 q1Tk1,第二个权重是 q 1 T k 2 q_1^T k_2 q1Tk2

第三步是对权重进行 normalization。在[3]中,作者首先将权重除以 d k \sqrt{d_k} dk ,然后送入 softmax 函数, d k d_k dk 是 key 向量的维数,作者认为当 d k d_k dk 很大时点积增长过快,导致 softmax 移动到梯度很小的区域,因此除以 d k \sqrt{d_k} dk 以稳定训练。

第四步是加权平均 value。用 softmaxed 权重乘以所有位置的 value,并将它们相加作为 x 1 x_1 x1 self-attention 的计算结果。
在这里插入图片描述

self-attention 矩阵计算

上面只计算了 x 1 x_1 x1 的 self-attention,实际上需要计算所有位置 x i x_i xi 的自注意力,相比起重复计算,矩阵计算大大简化了重复过程。此时将所有输入组合成矩阵 X ∈ R N × d X \in \mathbb{R}^{N \times d} XRN×d,其中 N 是位置数,首先计算 Q , K , V Q,K,V Q,K,V
在这里插入图片描述
可以看到,对于所有位置的输入 x i x_i xi W Q , W K , W V W^Q,W^K,W^V WQ,WK,WV 都是相同的,并非不同 x i x_i xi 对应不同转换矩阵。后面的步骤可以简化为一个公式:
在这里插入图片描述

Multi-headed attention

[3]进一步强化 self-attention 提出了 multi-headed attention,它在两个方面提升了 self-attention 的能力:

  1. 提升模型关注不同位置输入的能力,不同 head 可以关注自己感兴趣的位置区域。
  2. 给予模型更多的表达子空间,例如一个 head 负责边缘特征,另一个 head 负责颜色特征等。

简单来说,有几个 head 就计算几个独立的 self-attention,每个 head 仅仅是 W Q , W K , W V W^Q,W^K,W^V WQWKWV 不同,最后将所有 head 计算的 self-attention 连接在一起,和矩阵 W O W^O WO 相乘获得 multi-headed attention,最终的 attention 包含了所有 head 的信息,下图是 head = 8 时的计算流程:
在这里插入图片描述

Positional Encoding & Residuals

为了让模型获得序列中各单词的位置信息,transformer 在 embedding 上额外加入了 positional vector,这个向量包含了单词在序列中的位置信息,或者单词之间的距离信息。除此之外,encoder 中每个子层(self-attention,ffnn)之间还增加了残差连接,连接后跟着一步 layer normalization 操作,如下图所示:
在这里插入图片描述

Decoder

decoder 和 encoder 的原理基本相同。在网络结构上,每个 decoder 增加了一个 encoder-decoder attention 子层,计算方式和 multi-headed attention 一致,只不过 key 和 value 来自 encoder,query 来自 decoder,相当于互注意力。在 self-attention 子层中,该子层只允许接触当前及之前位置的单词(毕竟后面的翻译结果还没出来,没有意义),这是通过将除以 d k \sqrt{d_k} dk 改成除以 − ∞ -\infty 实现的。整体结构如下:
在这里插入图片描述

引用

[1] Mechanics of Seq2seq Models With Attention
[2] The Illustrated Transformer
[3] Attention Is All You Need

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值