2.1 图像分类-K最近邻算法

本文探讨了K最近邻(KNN)算法在图像分类任务中的应用,详细讲解了K值与决策边界的关系,以及L1和L2距离度量的选择原则。介绍了通过交叉验证设置超参数的方法,并讨论了KNN算法在图像处理上的弱点,包括计算效率低下和维度诅咒问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1 图像分类-K最近邻算法

Hyperparamters: K

一般来说K选择的越大就会使得决策边界越平滑。

Hyperparamters: Distance Metric

  • L1(Manhattan) distance = ∑ p ∣ I 1 p − I 2 p ∣ \sum_p|I_1^p - I_2^p| pI1pI2p
  • L2(Euclidean) distance = ∑ p ( I 1 p − I 2 p ) 2 \sqrt{\sum_p(I_1^p - I_2^p)^2} p(I1pI2p)2
    PS:当你旋转坐标系的时候L1的距离会发生变化而L2不会,所以如果你的feature vector里面有比较重要的feature时,一般采用L1距离,而如果是一个一般的vector就使用L2距离。

Setting Hyperparameters

Idear #3: Split data into train, val, test; choose hyperparamters on val and evaluate on test.
Idear #4: Cross-Validation: Split data into folds, try each fold as validation and average the results.(Useful for small datasets, but not useds too frequently in deep learning

Weakness on images

  • Very slow at test time
  • Distance metrics on pixels are not informative
  • Curse of dimensionality(为了保证特征空间的训练样本比较密集均匀分布,那么训练样本就会呈指数增加)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值