Pandas-索引

import numpy as np
import pandas as pd
df = pd.read_csv('data/table.csv',index_col='ID')
df.head()

在这里插入图片描述

一 单级索引

1 loc方法、iloc方法、[]操作符
最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点:
(a) loc方法
① 单行索引:

df.loc[1103]

在这里插入图片描述② 多行索引:

df.loc[[1102,2304]]

在这里插入图片描述注意:左右全闭所有在loc中使用的切片全部包含右端点!这是因为如果作为Pandas的使用者,那么肯定不太关心最后一个标签再往后一位是什么,但是如果是左闭右开,那么就很麻烦,先要知道再后面一列的名字是什么,非常不方便,因此Pandas中将loc设计为左右全闭

df.loc[1304:2103].head()

在这里插入图片描述

df.loc[2402::-1].head()

在这里插入图片描述③ 单列索引:

df.loc[:,'Height'].head()

在这里插入图片描述
④ 多列索引:

df.loc[:,['Height','Math']].head()

在这里插入图片描述

df.loc[:,'Height':'Math'].head()

在这里插入图片描述

⑤ 联合索引:

df.loc[1102:2401:3,'Height':'Math'].head()

在这里插入图片描述

⑥ 函数式索引:

df.loc[lambda x:x['Gender']=='M'].head()
#loc中使用的函数,传入参数就是前面的df

在这里插入图片描述

#这里的例子表示,loc中能够传入函数,并且函数的输入值是整张表,输出为标量、切片、合法列表(元素出现在索引中)、合法索引
def f(x):
    return [1101,1103]
df.loc[f]

在这里插入图片描述

⑦ 布尔索引(将重点在第2节介绍)

df.loc[df['Address'].isin(['street_7','street_4'])].head()

在这里插入图片描述

df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()

在这里插入图片描述小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
(b)iloc方法(注意与loc不同,切片右端点不包含)
① 单行索引:

df.iloc[3]

在这里插入图片描述

② 多行索引:

df.iloc[3:5]

在这里插入图片描述

③ 单列索引:

df.iloc[:,3].head()

在这里插入图片描述

④ 多列索引:

df.iloc[:,7::-2].head()

在这里插入图片描述

⑤ 混合索引:

df.iloc[3::4,7::-2].head()

在这里插入图片描述

⑥ 函数式索引:

df.iloc[lambda x:[3]].head()

在这里插入图片描述小节:iloc中接收的参数只能为整数或整数列表或布尔列表,不能使用布尔Series,如果要用就必须如下把values拿出来

#df.iloc[df['School']=='S_1'].head() #报错
df.iloc[(df['School']=='S_1').values].head()

在这里插入图片描述

(c) []操作符
Series的[]操作
① 单元素索引:

s = pd.Series(df['Math'],index=df.index)
s[1101]
#使用的是索引标签

34.0

② 多行索引:

s[0:4]
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆

在这里插入图片描述

③ 函数式索引:

s[lambda x: x.index[16::-6]]
#注意使用lambda函数时,直接切片(如:s[lambda x: 16::-6])就报错,此时使用的不是绝对位置切片,而是元素切片,非常易错

在这里插入图片描述

④ 布尔索引:

s[s>80]

在这里插入图片描述【注意】如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中[]的浮点切片并不是进行位置比较,而是值比较,非常特殊

s_int = pd.Series([1,2,3,4],index=[1,3,5,6])
s_float = pd.Series([1,2,3,4],index=[1.,3.,5.,6.])
s_int

在这里插入图片描述

s_int[2:]

在这里插入图片描述

s_float

在这里插入图片描述

#注意和s_int[2:]结果不一样了,因为2这里是元素而不是位置
s_float[2:]

在这里插入图片描述

DataFrame的[]操作
① 单行索引:

df[1:2]
#这里非常容易写成df['label'],会报错
#同Series使用了绝对位置切片
#如果想要获得某一个元素,可用如下get_loc方法:

在这里插入图片描述

row = df.index.get_loc(1102)
df[row:row+1]

在这里插入图片描述

② 多行索引:

#用切片,如果是选取指定的某几行,推荐使用loc,否则很可能报错
df[3:5]

在这里插入图片描述

③ 单列索引:

df['School'].head()

在这里插入图片描述

④ 多列索引:

df[['School','Math']].head()

在这里插入图片描述

⑤函数式索引:

df[lambda x:['Math','Physics']].head()

在这里插入图片描述

⑥ 布尔索引:

df[df['Gender']=='F'].head()

在这里插入图片描述小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择

2 布尔索引
(a)布尔符号:’&’,’|’,’~’:分别代表和and,或or,取反not

df[(df['Gender']=='F')&(df['Address']=='street_2')].head()

在这里插入图片描述

df[(df['Math']>85)|(df['Address']=='street_7')].head()

在这里插入图片描述

df[~((df['Math']>75)|(df['Address']=='street_1'))].head()

在这里插入图片描述loc和[]中相应位置都能使用布尔列表选择:

df.loc[df['Math']>60,df.columns=='Physics'].head()
#思考:为什么df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()得到和上述结果一样?values能去掉吗?

在这里插入图片描述

(b) isin方法

df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]

在这里插入图片描述

#上面也可以用字典方式写:
df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True

在这里插入图片描述

3 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现:

display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]

‘S_1’
‘S_1’
‘S_1’
‘S_1’

4 区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
(a)利用interval_range方法

pd.interval_range(start=0,end=5)
#closed参数可选'left''right''both''neither',默认左开右闭

IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
closed=‘right’,
dtype=‘interval[int64]’)

pd.interval_range(start=0,periods=8,freq=5)
#periods参数控制区间个数,freq控制步长

IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
closed=‘right’,
dtype=‘interval[int64]’)

(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:

math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
math_interval.head()

在这里插入图片描述

(c)区间索引的选取

df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
            .reset_index().set_index('Math_interval')
df_i.head()

在这里插入图片描述

df_i.loc[65].head()
#包含该值就会被选中

在这里插入图片描述

df_i.loc[[65,90]].head()

在这里插入图片描述

如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:

#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
#只要索引与(70,85]这个区间有交集就会被选中,注意pd.Interval默认构造区间都是左开右闭,可选closed参数right,left,both,neither

在这里插入图片描述

二、多级索引

  1. 创建多级索引
    (a)通过from_tuple或from_arrays
    ① 直接创建元组
tuples = [('A','a'),('A','b'),('B','a'),('B','b')]
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
mul_index

MultiIndex([(‘A’, ‘a’),
(‘A’, ‘b’),
(‘B’, ‘a’),
(‘B’, ‘b’)],
names=[‘Upper’, ‘Lower’])

pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

在这里插入图片描述

② 利用zip创建元组

L1 = list('AABB')
L2 = list('abab')
tuples = list(zip(L1,L2))
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

在这里插入图片描述

③ 通过Array创建

arrays = [['A','a'],['A','b'],['B','a'],['B','b']]
mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

在这里插入图片描述

mul_index
#由此看出内部自动转成元组

在这里插入图片描述

(b)通过from_product

L1 = ['A','B']
L2 = ['a','b']
pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
#两两相乘

MultiIndex([(‘A’, ‘a’),
(‘A’, ‘b’),
(‘B’, ‘a’),
(‘B’, ‘b’)],
names=[‘Upper’, ‘Lower’])

(c)指定df中的列创建(set_index方法)

df_using_mul = df.set_index(['Class','Address'])
df_using_mul.head()

在这里插入图片描述

  1. 多层索引切片
df_using_mul.head()

在这里插入图片描述

(a)一般切片

#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
#df_using_mul.index.is_lexsorted()
#该函数检查是否排序
df_using_mul.sort_index().loc['C_2','street_5']
#df_using_mul.sort_index().index.is_lexsorted()

在这里插入图片描述

#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
#注意此处由于使用了loc,因此仍然包含右端点

在这里插入图片描述

df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
#非元组也是合法的,表示选中该层所有元素

在这里插入图片描述

(b)第一类特殊情况:由元组构成列表

df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
#表示选出某几个元素,精确到最内层索引

在这里插入图片描述

(c)第二类特殊情况:由列表构成元组

df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
#选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行

在这里插入图片描述

  1. 多层索引中的slice对象
L1,L2 = ['A','B'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(6,9),index=mul_index1,columns=mul_index2)
df_s

在这里插入图片描述

idx=pd.IndexSlice

IndexSlice本质上是对多个Slice对象的包装

idx[1:9:2,'A':'C','start':'end':2]

(slice(1, 9, 2), slice(‘A’, ‘C’, None), slice(‘start’, ‘end’, 2))

索引Slice可以与loc一起完成切片操作,主要有两种用法
(a)loc[idx[,]]型
第一个星号表示行,第二个表示列,且使用布尔索引时,需要索引对齐

#例子1
df_s.loc[idx['B':,df_s.iloc[0]>0.6]]
#df_s.loc[idx['B':,df_s.iloc[:,0]>0.6]] #索引没有对齐报错

在这里插入图片描述

#例子2
df_s.loc[idx[df_s.iloc[:,0]>0.6,:('E','f')]]

在这里插入图片描述
(b)loc[idx[,],idx[,]]型¶
这里与上面的区别在于(a)中的loc是没有逗号隔开的,但(b)是用逗号隔开,前面一个idx表示行索引,后面一个idx为列索引
这种用法非常灵活,因此多举几个例子方便理解

#例子1
df_s.loc[idx['A'],idx['D':]]
#后面的层出现,则前面的层必须出现
#df_s.loc[idx['a'],idx['D':]] #报错

在这里插入图片描述

#例子2
df_s.loc[idx[:'B','b':],:] #举这个例子是为了说明①可以在相应level使用切片②某一个idx可以用:代替表示全选

在这里插入图片描述

#例子3
df_s.iloc[:,0]>0.6

在这里插入图片描述

df_s.loc[idx[:'B',df_s.iloc[:,0]>0.6],:] #这个例子表示相应位置还可以使用布尔索引

在这里插入图片描述

#例子4
#特别要注意,(b)中的布尔索引是可以索引不对齐的,只需要长度一样,比如下面这个例子
df_s.loc[idx[:'B',(df_s.iloc[0]>0.6)[:6]],:]

在这里插入图片描述

#例子5
df_s.loc[idx[:'B','c':,(df_s.iloc[:,0]>0.6)],:]
#idx中层数k1大于df层数k2时,idx前k2个参数若相应位置是元素或者元素切片,则表示相应df层的元素筛选,同时也可以选择用同长度bool序列
#idx后面多出来的参数只能选择同bool序列,这样设计的目的是可以将元素筛选和条件筛选同时运用

在这里插入图片描述

#例子6
df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),(df_s.iloc[:,0]>0.6)],:] #这个就不是元素筛选而是条件筛选
#df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),'c',:]] #报错
#df_s.loc[idx[:'c','B',(df_s.iloc[:,0]>0.6),:]] #报错

在这里插入图片描述
4. 索引层的交换
(a)swaplevel方法(两层交换)

df_using_mul.head()

在这里插入图片描述

df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()

在这里插入图片描述

(b)reorder_levels方法(多层交换)

df_muls = df.set_index(['School','Class','Address'])
df_muls.head()

在这里插入图片描述

df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()

在这里插入图片描述

#如果索引有name,可以直接使用name
df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()

在这里插入图片描述

三、索引设定

  1. index_col参数
    index_col是read_csv中的一个参数,而不是某一个方法:
pd.read_csv('data/table.csv',index_col=['Address','School']).head()

在这里插入图片描述

  1. reindex和reindex_like¶
    reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
df.head()

在这里插入图片描述

df.reindex(index=[1101,1203,1206,2402])

在这里插入图片描述

df.reindex(columns=['Height','Gender','Average']).head()

在这里插入图片描述
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调

df.reindex(index=[1101,1203,1206,2402],method='bfill')
#这里的单调是指df必须索引经过排序,否则报错
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的

在这里插入图片描述

df.reindex(index=[1101,1203,1206,2402],method='nearest')
#数值上1205比1301更接近1206,因此用前者填充

在这里插入图片描述

reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表

df_temp = pd.DataFrame({'Weight':np.zeros(5),
                        'Height':np.zeros(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID')
df_temp.reindex_like(df[0:5][['Weight','Height']])

在这里插入图片描述

如果df_temp单调还可以使用method参数:

df_temp = pd.DataFrame({'Weight':range(5),
                        'Height':range(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
#可以自行检验这里的1105的值是否是由bfill规则填充

在这里插入图片描述

  1. set_index和reset_index
    先介绍set_index:从字面意思看,就是将某些列作为索引
    使用表内列作为索引:
df.head()

在这里插入图片描述

df.set_index('Class').head()

在这里插入图片描述

利用append参数可以将当前索引维持不变

df.set_index('Class',append=True).head()

在这里插入图片描述
当使用与表长相同的列作为索引(需要先转化为Series,否则报错):

df.set_index(pd.Series(range(df.shape[0]))).head()

在这里插入图片描述

可以直接添加多级索引:

df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()

在这里插入图片描述

下面介绍reset_index方法,它的主要功能是将索引重置
默认状态直接恢复到自然数索引:

df.reset_index().head()

在这里插入图片描述
用level参数指定哪一层被reset,用col_level参数指定set到哪一层:

L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_temp.head()

在这里插入图片描述

df_temp1 = df_temp.reset_index(level=1,col_level=1)
df_temp1.head()

在这里插入图片描述

df_temp1.columns
#看到的确插入了level2

在这里插入图片描述

df_temp1.index
#最内层索引被移出

Index([‘A’, ‘A’, ‘A’, ‘B’, ‘B’, ‘B’, ‘C’, ‘C’, ‘C’], dtype=‘object’, name=‘Upper’)

  1. rename_axis和rename
    rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})

在这里插入图片描述
rename方法用于修改列或者行索引标签,而不是索引名:

df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()

在这里插入图片描述

四、常用索引型函数

  1. where函数
    当对条件为False的单元进行填充:
df.head()

在这里插入图片描述

df.where(df['Gender']=='M').head()
#不满足条件的行全部被设置为NaN

在这里插入图片描述

通过这种方法筛选结果和[]操作符的结果完全一致:

df.where(df['Gender']=='M').dropna().head()

在这里插入图片描述

第一个参数为布尔条件,第二个参数为填充值:

df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()

在这里插入图片描述

  1. mask函数
    mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
df.mask(df['Gender']=='M').dropna().head()

在这里插入图片描述

df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()

在这里插入图片描述

  1. query函数
df.head()

在这里插入图片描述
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符

df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')

在这里插入图片描述

五、重复元素处理

  1. duplicated方法
    该方法返回了是否重复的布尔列表
df.duplicated('Class').head()

在这里插入图片描述

可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True

df.duplicated('Class',keep='last').tail()

在这里插入图片描述

df.duplicated('Class',keep=False).head()

在这里插入图片描述

  1. drop_duplicates方法
    从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
df.drop_duplicates('Class')

在这里插入图片描述

参数与duplicate函数类似:

df.drop_duplicates('Class',keep='last')

在这里插入图片描述

在传入多列时等价于将多列共同视作一个多级索引,比较重复项:

df.drop_duplicates(['School','Class'])

在这里插入图片描述

六、抽样函数

这里的抽样函数指的就是sample函数
(a)n为样本量

df.sample(n=5)

在这里插入图片描述

(b)frac为抽样比

df.sample(frac=0.05)

在这里插入图片描述

(c)replace为是否放回

df.sample(n=df.shape[0],replace=True).head()

在这里插入图片描述

df.sample(n=35,replace=True).index.is_unique

False

(d)axis为抽样维度,默认为0,即抽行

df.sample(n=3,axis=1).head()

在这里插入图片描述

(e)weights为样本权重,自动归一化

df.sample(n=3,weights=np.random.rand(df.shape[0])).head()

在这里插入图片描述

#以某一列为权重,这在抽样理论中很常见
#抽到的概率与Math数值成正比
df.sample(n=3,weights=df['Math']).head()

在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: pandas-official-tut-zh epub是指Pandas官方教程的中文电子书格式。Pandas是一个强大的数据分析和处理库,被广泛应用于数据科学和数据分析领域。Pandas官方教程提供了详细的指导和示例,帮助用户学习和使用Pandas库。 这本Pandas官方教程的中文电子书以epub格式提供,这意味着我们可以在支持epub格式的电子书阅读器或软件中阅读它。epub格式是一种开放的电子书标准,可以自由地在各种平台上阅读,如电脑、平板电脑、智能手机等。使用epub格式的好处是,它可以根据设备的屏幕尺寸和用户的设置自动调整页面布局和字体大小,提供更好的阅读体验。 这本教程的目标是帮助读者从零开始学习Pandas,并逐步深入了解其功能和用法。它提供了丰富的示例代码和实践演练,以帮助读者掌握Pandas的各种技术和技巧。教程涵盖了Pandas的基本数据结构,如Series和DataFrame,以及它们的索引、切片、过滤、排序等操作。此外,还介绍了Pandas的数据清洗、处理缺失值、数据合并、分组聚合等高级技术。 这本教程的中文版本使更多母语为中文的读者能够更轻松地学习和理解Pandas的概念和功能。epub格式的电子书具有良好的可读性和易于导航的特点,读者可以根据自己的需求和节奏进行学习,随时随地获取所需的知识。 总之,pandas-official-tut-zh epub是一本Pandas官方教程的中文电子书,提供了全面且易于理解的Pandas学习资源,可帮助读者入门并熟练使用该库。无论是初学者还是有经验的数据科学家,都可以从中受益,并将其应用于实际的数据分析项目中。 ### 回答2: pandas-official-tut-zh epub是一本关于pandas库的官方指南的电子书。Pandas是一个强大的数据分析工具,它使用Python编程语言开发。这本电子书提供了从基础概念到高级用法的全面介绍,将帮助读者掌握该库的各种功能和技巧。 该电子书以易于理解和直观的方式解释了pandas库的核心概念,如数据结构、索引和选择、数据聚合和生成等。读者可以通过电子书学习如何使用pandas来处理、清洗和分析各种类型的数据,包括结构化数据、时间序列数据和文本数据。 电子书的内容结构清晰,各章节之间有明确的连贯性,使读者可以系统地学习和理解pandas库的功能和用法。除了基本的数据操作,该电子书还介绍了一些高级特性,如数据合并、重塑和透视等,以及与其他Python工具库的集成。 pandas-official-tut-zh epub不仅提供了理论知识,还包含了丰富的实例代码和可运行的示例,读者可以通过这些实例更深入地理解和运用pandas库。此外,该电子书还提供了一些实际的案例研究,展示了pandas在真实世界中的应用。 总之,pandas-official-tut-zh epub是一本非常有价值的电子书,适合对数据处理和分析感兴趣的读者。无论是初学者还是有一定经验的开发者,都可以从该电子书中获得关于pandas库的全面指导和实用技巧。 ### 回答3: pandas-official-tut-zh epub是一个关于Python数据分析库Pandas的中文官方教程的电子书文件。Pandas是一个强大的数据处理和分析工具,可用于处理和操作大型数据集。 首先,这本电子书是官方教程,意味着内容是由Pandas的开发团队编写的,可以保证信息的准确性和可靠性。它提供了详细的指导和示例,帮助读者了解Pandas的基本功能和高级技术。 这本教程以epub格式提供,这意味着它可以在各种电子设备上进行阅读,如电脑、平板电脑和智能手机。由于epub格式具有自适应屏幕大小和排版的优势,因此读者可以在任何设备上获得良好的阅读体验。 该教程分为多个章节,从介绍Pandas的基本概念和数据结构开始,逐步深入讲解Pandas的应用和高级功能。它涵盖了数据清洗、转换、聚合、合并等方面的常见任务,以及时间序列和数据可视化等更高级的主题。 读者可以通过学习这本教程来掌握Pandas的核心概念和操作技巧,从而更有效地进行数据分析和处理。这对于数据科学家、数据分析师和Python开发者来说都是非常有价值的资源。 总而言之,pandas-official-tut-zh epub是一本官方编写的关于Python数据分析库Pandas的中文教程电子书,为读者提供了全面而系统的学习资源,帮助他们掌握Pandas的各种功能和技术。无论是初学者还是有经验的用户都可以从中受益,并且它的epub格式使得阅读更加方便和灵活。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值