一、单级索引
1. loc方法、iloc方法、[]操作符
最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点
(a)loc方法(注意:所有在loc中使用的切片全部包含右端点!)
① 单行索引:
df.loc[1103]
② 多行索引:
df.loc[[1102,2304]]
df.loc[1304:]
df.loc[2402::-1]
③ 单列索引:
df.loc[:,'Height']
④ 多列索引:
df.loc[:,['Height','Math']]
df.loc[:,'Height':'Math']
⑤ 联合索引:
df.loc[1102:2401:3,'Height':'Math']
⑥ 函数式索引:
df.loc[lambda x:x['Gender']=='M']
def f(x):
return [1101,1103]
df.loc[f]
⑦ 布尔索引(将重点在第2节介绍)
df.loc[df['Address'].isin(['street_7','street_4'])]
df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]]
本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
(b)iloc方法(注意与loc不同,切片右端点不包含)
① 单行索引:
df.iloc[3]
② 多行索引:
df.iloc[3:5]
③ 单列索引:
df.iloc[:,3]
④ 多列索引:
df.iloc[:,7::-2]
⑤ 混合索引:
df.iloc[3::4,7::-2]
⑥ 函数式索引:
df.iloc[lambda x:[3]]
小节:由上所述,iloc中接收的参数只能为整数或整数列表,不能使用布尔索引
c) []操作符
如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中的浮点[]并不是进行位置比较,而是值比较,非常特殊
(c.1)Series的[]操作
① 单元素索引:
s = pd.Series(df['Math'],index=df.index)
s[1101]
#使用的是索引标签
② 多行索引:
s[0:4]
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆
③ 函数式索引:
s[lambda x: x.index[16::-6]]
#注意使用lambda函数时,直接切片(如:s[lambda x: 16::-6])就报错,此时使用的不是绝对位置切片,而是元素切片,非常易错
④ 布尔索引:
s[s>80]
(c.2)DataFrame的[]操作
① 单行索引:
df[1:2]
#这里非常容易写成df['label'],会报错
#同Series使用了绝对位置切片
#如果想要获得某一个元素,可用如下get_loc方法:
row = df.index.get_loc(1102)
df[row:row+1]
② 多行索引:
#用切片,如果是选取指定的某几行,推荐使用loc,否则很可能报错
df[3:5]
③ 单列索引:
df['School']
④ 多列索引:
df[['School','Math']]
⑤函数式索引:
df[lambda x:['Math','Physics']]
⑥ 布尔索引:
df[df['Gender']=='F']
小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
2. 布尔索引
(a)布尔符号:'&','|','~':分别代表和and,或or,取反not
df[(df['Gender']=='F')&(df['Address']=='street_2')]
df[(df['Math']>85)|(df['Address']=='street_7')]
df[~((df['Math']>75)|(df['Address']=='street_1'))]
loc和[]中相应位置都能使用布尔列表选择:
df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()
#如果不加values就会索引对齐发生错误,Pandas中的索引对齐是一个重要特征,很多时候非常使用
#但是若不加以留意,就会埋下隐患
(b) isin方法
df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
#上面也可以用字典方式写:
df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True
3. 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现:
display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]
4. 区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
(a)利用interval_range方法
pd.interval_range(start=0,end=5)
#closed参数可选'left''right''both''neither',默认左开右闭
pd.interval_range(start=0,periods=8,freq=5)
#periods参数控制区间个数,freq控制步长
(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
math_interval.head()
(c)区间索引的选取
df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
.reset_index().set_index('Math_interval')
df_i.loc[65].head()
#包含该值就会被选中
df_i.loc[[65,90]].head()
如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:
#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
二、多级索引
1. 创建多级索引
(a)通过from_tuple或from_arrays
① 直接创建元组
tuples = [('A','a'),('A','b'),('B','a'),('B','b')]
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
mul_index
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
② 利用zip创建元组
L1 = list('AABB')
L2 = list('abab')
tuples = list(zip(L1,L2))
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
③ 通过Array创建
arrays = [['A','a'],['A','b'],['B','a'],['B','b']]
mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
mul_index
#由此看出内部自动转成元组
(b)通过from_product
L1 = ['A','B']
L2 = ['a','b']
pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
#两两相乘
(c)指定df中的列创建(set_index方法)
df_using_mul = df.set_index(['Class','Address'])
df_using_mul.head()
2. 多层索引切片
(a)一般切片
#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
#df_using_mul.index.is_lexsorted()
#该函数检查是否排序
df_using_mul.sort_index().loc['C_2','street_5']
#df_using_mul.sort_index().index.is_lexsorted()
#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
#注意此处由于使用了loc,因此仍然包含右端点
df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
#非元组也是合法的,表示选中该层所有元素
(b)第一类特殊情况:由元组构成列表
df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
#表示选出某几个元素,精确到最内层索引
(c)第二类特殊情况:由列表构成元组
df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
#选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行v
3. 多层索引中的slice对象
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_s
idx=pd.IndexSlice
索引Slice的使用非常灵活:
df_s.loc[idx['B':,df_s['D']['d']>0.3],idx[df_s.sum()>4]]
#df_s.sum()默认为对列求和,因此返回一个长度为9的数值列表
4. 索引层的交换
(a)swaplevel方法(两层交换)
df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
(b)reorder_levels方法(多层交换)
df_muls = df.set_index(['School','Class','Address'])
df_muls.head()
df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
#如果索引有name,可以直接使用name
df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
三、索引设定
1. index_col参数
index_col是read_csv中的一个参数,而不是某一个方法:
pd.read_csv('data/table.csv',index_col=['Address','School']).head()
2. reindex和reindex_like
reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
df.reindex(index=[1101,1203,1206,2402])
df.reindex(columns=['Height','Gender','Average']).head()
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
df.reindex(index=[1101,1203,1206,2402],method='bfill')
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的
df.reindex(index=[1101,1203,1206,2402],method='nearest')
#数值上1205比1301更接近1206,因此用前者填充
reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
df_temp = pd.DataFrame({'Weight':np.zeros(5),
'Height':np.zeros(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID')
df_temp.reindex_like(df[0:5][['Weight','Height']])
如果df_temp单调还可以使用method参数:
df_temp = pd.DataFrame({'Weight':range(5),
'Height':range(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
#可以自行检验这里的1105的值是否是由bfill规则填充
3. set_index和reset_index
先介绍set_index:从字面意思看,就是将某些列作为索引
使用表内列作为索引:
df.set_index('Class').head()
利用append参数可以将当前索引维持不变
df.set_index('Class',append=True).head()
当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
df.set_index(pd.Series(range(df.shape[0]))).head()
可以直接添加多级索引:
df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
下面介绍reset_index方法,它的主要功能是将索引重置
默认状态直接恢复到自然数索引:
df.reset_index().head()
用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_temp.head()
df_temp1 = df_temp.reset_index(level=1,col_level=1)
df_temp1.head()
df_temp1.columns
#看到的确插入了level2
df_temp1.index
#最内层索引被移出
4. rename_axis和rename
rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
rename方法用于修改列或者行索引标签,而不是索引名:
df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()
四、常用索引型函数
1. where函数
当对条件为False的单元进行填充:
df.where(df['Gender']=='M').head()
#不满足条件的行全部被设置为NaN
通过这种方法筛选结果和[]操作符的结果完全一致:
df.where(df['Gender']=='M').dropna().head()
第一个参数为布尔条件,第二个参数为填充值:
df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
2. mask函数
mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
df.mask(df['Gender']=='M').dropna().head()
df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
3. query函数
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
五、重复元素处理
1. duplicated方法
该方法返回了是否重复的布尔列表
df.duplicated('Class').head()
可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为False
df.duplicated('Class',keep='last').tail()
df.duplicated('Class',keep=False).head()
2. drop_duplicates方法
从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
df.drop_duplicates('Class')
参数与duplicate函数类似:
df.drop_duplicates('Class',keep='last')
在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
df.drop_duplicates(['School','Class'])
六、抽样函数
这里的抽样函数指的就是sample函数
(a)n为样本量
df.sample(n=5)
(b)frac为抽样比
df.sample(frac=0.05)
(c)replace为是否放回
df.sample(n=df.shape[0],replace=True).head()
df.sample(n=35,replace=True).index.is_unique
(d)axis为抽样维度,默认为0,即抽行
df.sample(n=3,axis=1).head()
(e)weights为样本权重,自动归一化
df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
#以某一列为权重,这在抽样理论中很常见
df.sample(n=3,weights=df['Math']).head()