| 经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《OpenCV 4开发详解》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。 |
上述的边缘检测算子都具有方向性,因此需要分别求取X方向的边缘和Y方向的边缘,之后将两个方向的边缘综合得到图像的整体边缘。Laplacian算子具有各方向同性的特点,能够对任意方向的边缘进行提取,具有无方向性的优点,因此使用Laplacian算子提取边缘不需要分别检测X方向的边缘和Y方向的边缘,只需要一次边缘检测即可。Laplacian算子是一种二阶导数算子,对噪声比较敏感,因此常需要配合高斯滤波一起使用。
Laplacian算子的定义如式(5.20)所示。
L a p l a c i a n ( f ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 (5.20) Laplacian(f) = \frac{
{
{\partial ^2}f}}{
{\partial {x^2}}} + \frac{
{
{\partial ^2}f}}{
{\partial {y^2}}}\tag{5.20} Laplacian(f)=∂x2∂2f+∂y2∂
本文介绍了Laplacian算子在OpenCV 4中的应用,作为无方向性的边缘检测算子,它能直接提取图像边缘而不需要检测X和Y方向。Laplacian算子对噪声敏感,通常配合高斯滤波使用。OpenCV的Laplacian()函数用于实现这一操作,考虑了输出图像的数据类型、滤波器大小等因素。程序示例展示了高斯滤波前后使用Laplacian算子检测边缘的效果,表明预处理对提高边缘检测准确性的重要性。
最低0.47元/天 解锁文章
5679

被折叠的 条评论
为什么被折叠?



