点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
图像分割
图像分割,英文名image segmentation,就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:
基于阈值的分割方法
基于区域的分割方法
基于边缘的分割方法以及基于特定理论的分割方法
从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。
图像分割的目标是将图像中像素根据一定的规则分为若干个(N)个cluster集合,I每个集合包含一类像素。
根据算法分为监督学习算法和无监督学习算法,图像分割的算法多数都是无监督学习算法。---KMeans
距离变换与分水岭介绍
距离变换
距离变换常见算法有两种
不断膨胀/ 腐蚀得到
基于倒角距离
分水岭变换
分水岭变换常见的算法
基于浸泡理论实现
相关API
cv::distanceTransform(
InputArray src,
OutputArray dst,
OutputArray labels,
int distanceType,
int maskSize,
int labelType = DIST_LABEL_CCOMP
)
distanceType = DIST_L1/DIST_L2,
maskSize = 3x3,最新的支持5x5,推荐3x3、
labels离散维诺图输出,
dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致
cv::watershed(
InputArray image,
InputOutputArray markers
)
操作步骤
将白色背景变成黑色-目的是为后面的变换做准备
使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
转为二值图像通过threshold
距离变换
对距离变换结果进行归一化到[0~1]之间
使用阈值,再次二值化,得到标记
腐蚀得到每个Peak - erode
发现轮廓 – findContours
绘制轮廓- drawContours
分水岭变换 watershed
对每个分割区域着色输出结果
代码演示
新建一个项目opencv-0027,配置属性(VS2017配置OpenCV通用属性),然后在源文件写入#include和main方法
这次我们用opencv里面自带的一张图像来实个这个方法
运行显示的图像为
1.将白色背景变成黑色
我们运行看一下
可以看到右边的已经把背景都换为黑色了。
2.使用filter2D与拉普拉斯算子实现图像对比度提高,sharp
我们再运行看一下,左边的就是生成的结果图,可以看出左边的清晰度更高了一些
3.转为二值图像通过threshold
我们再运行看一下,左边的图像已经让我们转换为二值图像了,也比较清晰
4.距离变换
5.对距离变换结果进行归一化到[0~1]之间
因为距离变换看不出任何效果,所以我们把4和5两步放在一起显示
我们再运行一下看看执行结果
6.使用阈值,再次二值化,得到标记
显示效果为
7.腐蚀得到每个Peak
效果不太好看,我们需要再进行二值的腐蚀,把上面的代码再修改一下
我们再看一下运行效果,可以看出来比刚才的效果好很多了
8.标记并且开始查找轮廓
这一步只是查找轮廓,我们接下来绘制查找的轮廓再一起显示出来
9.绘制轮廓
上面drawContours和circle最后一个参数都是用了-1,代表着画的轮廓里面进行颜色填充
我们再显示一下看看效果
看到好像什么也没有,这是因为我们画的轮廓太小了, 我们改一下显示效果
把最后显示cv::imshow(imgdst,makers*5000)再乘5000,重新看一下显示效果
这会儿就可以看到绘制的轮廓出来了
10.分水岭变换
我们看看显示的效果
可以看出,每个轮廓都有明显的区分开了。
11.对每个分割区域着色输出结果
然后我们再运行看到最后结果
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~