在实际应用中,医学影像的主要问题有:受限于成像设备的原理与技术;手工阅片通常只能做到定性,很多细微的、定量的改变用肉眼无法判断;人工阅片耗费医生很多的时间和精力,而且很难做到大范围的确诊。
而人工智能的引入则能够有效解决部分问题,例如:
▪Junde Wu团队基于SAM的超强医学影像分割模型;
▪英伟达基于SAM提出医学图像标注效率神器;
▪谷歌医疗大模型Med-PaLM 2重磅升级,甚至达到了专家水准;不难想象,医学AI的未来向着通用医学智能(GMAI)发展!
谷歌揭秘了Med-PaLM技术,研究已登上了Nature
随着深度学习技术的发展,AI医学影像的适用模式、覆盖病种和应用场景不断丰富,既减轻了临床医师的诊疗负担,又能缓解医保支付压力。AI医学影像产业已经步入了高速发展的轨道。
8月8日-8月10日,我们邀请到沃恩智慧联合创始人,约翰·霍普金斯大学博士,多个顶会期刊审稿人Paul老师为大家带来——通用医疗智能AI新里程,和大家精讲医学AI的未来潜力与方向!
扫码预约直播
免费领13个医学图像AI入门项目及代码
1
讲师介绍:Paul老师
▪沃恩智慧联合创始人
▪约翰·霍普金斯大学博士
▪30+篇SCI1区/CCF A/B类
▪Chun-Tsung Scholar
▪18个AI顶会和期刊审稿人
▪可指导CV、NLP、AGI大模型等
4
直播大纲
第1天:AIGC+医学图像的火花
1、扩散模型基础
2、医学场景下的扩散模型
第2天:大模型时代下的医学图像研究
1、Segment Anything + 医学图像
2、LLM + 医学图像
第3天:医学AI的未来-通用医学智能
1、AGI
2、Medical Artificial General Intelligence
扫码预约直播
免费领13个医学图像AI入门项目及代码
在不久的将来,医学影像人工智能的创新成果能够更好地提升诊疗水平、服务患者。如此看来,AI医疗顶会的热门论文方向绝不容错过,下面就提供几个热门写作方向:
·临床决策支持
·生物医学数据挖掘
·智能健康监护
·医疗影像自动分析
·治疗方案开发
作为一个科研小白,怎么发表一篇相关的优质论文?
为了论文,大家都在努力的设计新网络、新策略、新training算法,只要能够在某一问题上做到一个很好的performance,论文就水到渠成。而想要快速达到,来自前辈的指点不可或缺。
一个好的指导老师的作用是,没有课题,能够结合所在课题组具体情况,结合最近热门研究方向,帮你规划课题,如果有了课题而缺少创新方向,老师能够快速帮你找到几种切入点,几种框架,甚至连需要读哪些文献都帮你想好了......
扫码预约直播
免费领13个医学图像AI入门项目及代码
免费领13个医学图像AI入门项目及代码
-END-