TPAMI 2024 | MixFormer: 基于迭代混合注意力的端到端跟踪

303 篇文章 21 订阅 ¥59.90 ¥99.00

题目:MixFormer: End-to-End Tracking With Iterative Mixed Attention

MixFormer: 基于迭代混合注意力的端到端跟踪

作者: Y. Cui; C. Jiang; G. Wu; L. Wang


摘要

视觉目标跟踪通常采用多阶段流水线,包括特征提取、目标信息集成和边界框估计。为了简化这一流程并统一特征提取和目标信息集成的过程,本文提出了一种紧凑的跟踪框架,称为 MixFormer,基于 transformers 构建。我们的核心设计是利用注意力操作的灵活性,提出了一种混合注意力模块(MAM),用于同时进行特征提取和目标信息集成。这种同步建模方案使我们能够提取目标特定的判别特征,并在目标和搜索区域之间进行广泛的通信。基于 MAM,我们通过堆叠多个 MAM 并在顶部放置一个定位头,简单地构建了我们的 MixFormer 跟踪器。具体来说,我们实例化了两种类型的 MixFormer 跟踪器,一种是分层跟踪器 MixCvT,另一种是非分层简单跟踪器 MixViT。对于这两种跟踪器,我们研究了一系列预训练方法,揭示了监督预训

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值