题目:MotionDiffuse: Text-Driven Human Motion Generation With Diffusion Model
MotionDiffuse:基于文本驱动的人体运动生成扩散模型
作者:M. Zhang; Z. Cai; L. Pan; F. Hong; X. Guo; L. Yang; Z. Liu
摘要
人类动作建模是许多现代图形应用的重要组成部分,通常需要专业技能。为了消除普通人的专业技能障碍,最近的动作生成方法可以直接根据自然语言生成人体动作。然而,使用各种文本输入实现多样化和细粒度动作生成仍然具有挑战性。为了解决这个问题,我们提出了MotionDiffuse,这是最早的基于扩散模型的文本驱动动作生成框架之一,它展示了相对于现有方法的几个理想属性。1) 概率映射。与确定性的语言-动作映射不同,MotionDiffuse通过一系列去噪步骤生成动作,在这些步骤中注入变化。2) 现实合成。MotionDiffuse擅长模拟复杂的数据分布并生成生动的动作序列。3) 多级操作。MotionDiffuse响应于对身体部位的细粒度指令,以及任意长度的动作合成与时变文本提示。我们的实验表明,