TPAMI 2024 | 无需源域的领域泛化预训练在面部反欺骗中的应用

297 篇文章 21 订阅 ¥49.90 ¥99.00

Source-Free Domain Adaptation With Domain Generalized Pretraining for Face Anti-Spoofing

题目:无需源域的领域泛化预训练在面部反欺骗中的应用

作者:Yuchen Liu; Yabo Chen; Wenrui Dai; Mengran Gou; Chun-Ting Huang; Hongkai Xiong


摘要

无源域自适应(SFDA)展示了提高基于深度学习的人脸反欺骗(FAS)的泛化能力的潜力,同时保护敏感人脸数据的隐私和安全。然而,现有的SFDA方法在没有源数据访问权限的情况下,由于无法减轻FAS中的域和身份偏差而显著降级。在本文中,我们提出了一种新颖的无源域自适应框架用于FAS(SDA-FAS),系统地解决了无源设置下的源模型预训练、源知识适应和目标数据探索的挑战。具体来说,我们开发了一种泛化方法用于源模型预训练,利用因果启发的PatchMix数据增强来减少域偏差,并设计了逐片对比损失来缓解身份偏差。对于源知识适应,我们提出了一种对比域对齐模块,以领

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值