Source-Free Domain Adaptation With Domain Generalized Pretraining for Face Anti-Spoofing
题目:无需源域的领域泛化预训练在面部反欺骗中的应用
作者:Yuchen Liu; Yabo Chen; Wenrui Dai; Mengran Gou; Chun-Ting Huang; Hongkai Xiong
摘要
无源域自适应(SFDA)展示了提高基于深度学习的人脸反欺骗(FAS)的泛化能力的潜力,同时保护敏感人脸数据的隐私和安全。然而,现有的SFDA方法在没有源数据访问权限的情况下,由于无法减轻FAS中的域和身份偏差而显著降级。在本文中,我们提出了一种新颖的无源域自适应框架用于FAS(SDA-FAS),系统地解决了无源设置下的源模型预训练、源知识适应和目标数据探索的挑战。具体来说,我们开发了一种泛化方法用于源模型预训练,利用因果启发的PatchMix数据增强来减少域偏差,并设计了逐片对比损失来缓解身份偏差。对于源知识适应,我们提出了一种对比域对齐模块,以领