题目:DynGAN: Solving Mode Collapse in GANs With Dynamic Clustering
DynGAN: 使用动态聚类解决GAN中的模式崩溃
作者:Yixin Luo; Zhouwang Yang
摘要
生成对抗网络 (GAN) 是广泛使用的生成模型,用于合成复杂和真实的数据。然而,模式崩溃,即生成样本的多样性显著低于真实样本的多样性,这对于进一步应用构成了主要挑战。我们的理论分析表明,当真实数据中存在多个模式时,生成器损失函数相对于其参数是非凸的。特别是,生成分布与真实分布的完美部分模式覆盖所对应的参数是生成器损失函数的局部最小值。为了解决模式崩溃问题,我们提出了一个称为动态GAN的统一框架。该方法通过对可观察的判别器输出设定阈值来检测生成器中的崩溃样本,根据这些崩溃样本划分训练集,并在这些分区上训练动态条件模型。理论结果确保了渐进的模式覆盖,并且在合成和真实数据集上的实验表明,我们的方法优于几种GAN变体。总之,我们检查了模式崩溃的根本原因,并提出了一种新方法来定量检测和解决GAN中的模式崩溃问题。