TPAMI 2024 | 用于自监督点云表示的生成变分对比学习

299 篇文章 21 订阅 ¥49.90 ¥99.00

Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation

题目:用于自监督点云表示的生成变分对比学习

作者:Bohua Wang; Zhiqiang Tian; Aixue Ye; Feng Wen; Shaoyi Du; Yue Gao


摘要

三维点云的自监督表示学习受到了越来越多的关注。然而,现有的3D计算机视觉领域的方法通常使用固定的嵌入来表示潜在特征,并对嵌入施加硬约束,以使正样本的潜在特征值趋于一致,这限制了特征提取器在不同数据域上的泛化能力。为了解决这个问题,我们提出了一个生成变分对比学习(GVC)模型,其中使用高斯分布来构建潜在特征的连续、平滑表示。构建了分布约束和交叉监督,以提高特征提取器在合成和真实世界数据上的迁移能力。具体来说,我们设计了一个变分对比模块来约束特征分布,而不是潜在空间中每个样本对应的特征值。此外,引入了一个生成交叉监督模块,以保留不变特征并促进正样本间特征分布的一致性。实验结果表明,GVC在不同的下游任务上

IEEE TPAMIIEEE Transactions on Pattern Analysis and Machine Intelligence)是一个涵盖模式识别、计算机视觉、图像处理和机器学习等领域的高质量期刊,其中也包括用于缺陷检测的研究。 以下是一些在IEEE TPAMI期刊上发表的用于缺陷检测的论文: 1. "Automatic Defect Detection in X-Ray Images Using Convolutional Neural Networks"(使用卷积神经网络自动检测X射线图像中的缺陷)-- 该论文提出了一种基于卷积神经网络(CNN)的自动缺陷检测方法,该方法可以应用于各种类型的X射线图像中的缺陷检测。 2. "Unsupervised Defect Detection in Textured Materials Using Convolutional Autoencoders"(使用卷积自动编码器在纹理材料中进行无监督缺陷检测)-- 该论文提出了一种基于卷积自动编码器(CAE)的无监督缺陷检测方法,该方法可以有效地检测纹理材料中的缺陷。 3. "A Hierarchical Approach to Defect Detection in Semiconductor Wafer Images"(半导体晶圆图像缺陷检测的分层方法)-- 该论文提出了一种基于分层方法的缺陷检测方法,可以应用于半导体晶圆图像中的缺陷检测。 4. "Deep Learning-Based Defect Detection in Semiconductor Manufacturing"(基于深度学习的半导体制造中的缺陷检测)-- 该论文提出了一种基于深度学习的缺陷检测方法,可以应用于半导体制造中的缺陷检测,并且在实验中取得了良好的结果。 这些论文都展示了IEEE TPAMI作为一个重要的期刊,提供了广泛的研究和应用领域,包括缺陷检测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值