Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation
题目:用于自监督点云表示的生成变分对比学习
作者:Bohua Wang; Zhiqiang Tian; Aixue Ye; Feng Wen; Shaoyi Du; Yue Gao
摘要
三维点云的自监督表示学习受到了越来越多的关注。然而,现有的3D计算机视觉领域的方法通常使用固定的嵌入来表示潜在特征,并对嵌入施加硬约束,以使正样本的潜在特征值趋于一致,这限制了特征提取器在不同数据域上的泛化能力。为了解决这个问题,我们提出了一个生成变分对比学习(GVC)模型,其中使用高斯分布来构建潜在特征的连续、平滑表示。构建了分布约束和交叉监督,以提高特征提取器在合成和真实世界数据上的迁移能力。具体来说,我们设计了一个变分对比模块来约束特征分布,而不是潜在空间中每个样本对应的特征值。此外,引入了一个生成交叉监督模块,以保留不变特征并促进正样本间特征分布的一致性。实验结果表明,GVC在不同的下游任务上