题目:Empowering Real-World Image Super-Resolution With Flexible Interactive Modulation
通过灵活的交互式调制增强现实世界图像的超分辨率能力
作者:Chong Mou; Xintao Wang; Yanze Wu; Ying Shan; Jian Zhang
摘要
交云图像恢复旨在构建用户与恢复网络之间的交互路径,使用户能够根据自己的需求调节恢复结果。然而,现有方法主要受限于使用预定义和简单的合成退化来训练网络。因此,这些方法在面对与其假设不同的真实世界退化时,往往会遇到显著的性能下降。此外,现有的交云图像恢复方法仅支持全局调制,其中单一的调制因子支配整个图像的重建过程。在本文中,我们提出了一种新的方法来以交云的方式执行真实世界和复杂的图像超分辨率。具体来说,我们提出了一种基于度量学习退化估计策略,不仅估计整个图像的整体退化水平,而且估计真实世界场景中更细粒度的逐像素退化。这通过选择性调制基于密集估计的退化图的相应区域,实现了对恢复结果的局部控制。此外,我们提出了一种新的度量增强损失,以进一步增强真实世界图像超分辨率