论文信息
题目:MedMamba: VISION MAMBA FOR MEDICAL IMAGE CLASSIFICATION
MedMamba: 医学图像分类的视觉Mamba
作者:
源码:https://github.com/YubiaoYue/MedMamba
论文创新点
- 提出了MedMamba,这是第一个用于通用医学图像分类的视觉曼巴模型。该模型有效地结合了经典的卷积层和状态空间模型(SSM),以提取局部特征和捕获长期依赖关系,旨在提高医学图像分类的准确性和效率。
- 引入了一个名为SS-Conv-SSM的新型混合基本块。该块通过集成通道分割、卷积层、SSM层和通道混洗,提高了模型在提取医学图像特征时的效率,同时减少了参数数量和计算复杂度。
- 通过使用分组卷积策略和通道混洗操作,MedMamba在保持准确性的同时减少了