点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
扫描下方二维码,加入前沿学术论文交流星球!可以获得最新顶会/顶刊论文的idea解读、解读的PDF和CV从入门到精通资料,及最前沿应用!
各位读者们,我们决定以后每周一为大家汇总每周在知识星球内更新的论文解读内容!方便有需求的读者使用,并且欢迎各位读者加入我们的知识星球。每天都有最新的顶会、顶刊论文的解读文章,并且提供中文解读的PDF版本,方便读者下载阅读和使用。
医学图像处理文章
1.【TMI 2024】Toward Enabling Cardiac Digital Twins of Myocardial Infarction Using Deep Computational Models for Inverse Inference
中文题目:利用深度计算模型实现心肌梗死心脏数字孪生
2.【TMI 2024】Semantic-Oriented Visual Prompt Learning for Diabetic Retinopathy Grading on Fundus Images
中文题目:基于语义导向视觉提示学习的糖尿病视网膜病变眼底图像分级
【MIA 2024】Vessel-promoted OCT to OCTA image translation by heuristic contextual constraints
中文题目:基于启发式上下文约束的血管促进OCT到OCTA图像翻译
【MIA 2024】MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning
中文题目:MMGPL:基于图提示学习的多模态医学数据分析
【MIA 2024】Cascaded Multi-path Shortcut Diffusion Model for Medical Image Translation
中文题目:级联多路径快捷扩散模型在医学图像翻译中的应用
【TMI 2024】Manifold Regularizer for High-Resolution fMRI Joint Reconstruction and Dynamic Quantification
中文题目:高分辨率fMRI联合重建与动态定量的流形正则化
【TMI 2024】Attention-Aware Non-Rigid Image Registration for Accelerated MR Imaging
中文题目:注意力感知的非刚性图像配准加速磁共振成像
TPAMI期刊文章
英文题目:On the Number of Linear Regions of Convolutional Neural Networks With Piecewise Linear Activations
中文题目:卷积神经网络中分段线性激活函数的线性区域数量研究
Animatable Implicit Neural Representations for Creating Realistic Avatars From Videos
中文题目:基于视频创建逼真化身的可动画隐式神经表示
Non-Smooth Trajectory Optimization for Wheeled Balancing Robots with Contact Switches and Impacts
中文题目:非光滑轨迹优化:用于具有接触切换和冲击的轮式平衡机器人
STMixer: A One-Stage Sparse Action Detector
中文题目:STMixer: 一种单阶段稀疏动作检测器
MotionDiffuse: Text-Driven Human Motion Generation With Diffusion Model
中文题目:MotionDiffuse:基于文本驱动的人体运动生成扩散模型
MixFormer: End-to-End Tracking With Iterative Mixed Attention
中文题目:MixFormer: 基于迭代混合注意力的端到端跟踪
MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning
中文题目:MO-MIX:基于深度强化学习的多目标多智能体协同决策
In-Domain GAN Inversion for Faithful Reconstruction and Editability
中文题目:领域内GAN反演:用于精确重建和可编辑性
Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks
中文题目:面向对未知对抗性攻击具有泛化鲁棒性的元不变性防御
EvHandPose: Event-Based 3D Hand Pose Estimation With Sparse Supervision
中文题目:基于事件的稀疏监督3D手势姿态估计
Cross-Modal Federated Human Activity Recognition
中文题目:跨模态联合人体活动识别
CenterNet++ for Object Detection
中文题目:用于目标检测的CenterNet++
Anti-UAV410: A Thermal Infrared Benchmark and Customized Scheme for Tracking Drones in the Wild
中文题目:Anti-UAV410: 一种用于野外追踪无人机的热红外基准测试与定制化方案
遥感图像处理
【TRGS 2024】A Double-Head Global Reasoning Network for Object Detection of Remote Sensing Images
中文题目:遥感图像目标检测的双头全局推理网络
【TRGS 2024】A DeNoising FPN With Transformer R-CNN for Tiny Object Detection
中文题目:用于微小目标检测的去噪特征金字塔网络与transformer区域卷积神经网络
【TRGS 2024】A Decoder-Focused Multitask Network for Semantic Change Detection
中文题目:面向语义变化检测的解码器聚焦多任务网络
【TRGS 2024】4DST-BTMD: An Infrared Small Target Detection Method Based on 4-D Data-Sphered Space
中文题目:4DST-BTMD:基于4-D数据球面空间的红外小目标检测方法
【TRGS 2024】A Channel Adaptive Dual Siamese Network for Hyperspectral Object Tracking
中文题目:一种通道自适应的双暹罗网络用于高光谱目标跟踪
【TRGS 2024】A Conditional Diffusion Model With Fast Sampling Strategy for Remote Sensing Image Super-Resolution
中文题目:用于遥感图像超分辨率的带快速采样策略的条件扩散模型
通用模型应用系列
【魔改YOLO系列】YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images
中文题目:YOLO-pdd:一种使用深度表示和序列图像的新型多尺度PCB缺陷检测方法
【魔改UNet系列】LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation
中文题目:LightM-UNet:Mamba助力轻量级UNet进行医学图像分割
【魔改UNet系列】ID-UNet: A densely connected UNet architecture for infrared small target segmentation
中文题目:ID-UNet:一种用于红外小目标分割的密集连接UNet架构
【魔改Mamba系列】Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion
中文题目:遥感图像分割:使用视觉Mamba和多尺度多频率特征融合
【魔改Mamba系列】MaskMamba: A Hybrid Mamba-Transformer Model For Masked Image Generation
中文题目:MaskMamba:一种用于遮蔽图像生成的混合Mamba-Transformer模型
【魔改Mamba系列】Mamba-YOLO-World: Marrying YOLO-World with Mamba for Open-Vocabulary Detection
中文题目:Mamba-YOLO-World: 将 YOLO-World 与 Mamba 结合用于开放词汇检测
扫描下方二维码,加入前沿学术论文交流星球!可以获得最新顶会/顶刊论文的idea解读、解读的PDF和CV从入门到精通资料,及最前沿应用!
