CVPR 2024 | CPP-Net: 将多尺度特征融合引入深度展开CP-PPA网络用于压缩感知

论文信息

题目:CPP-Net: Embracing Multi-Scale Feature Fusion into Deep Unfolding CP-PPA Network for Compressive Sensing
CPP-Net: 将多尺度特征融合引入深度展开CP-PPA网络用于压缩感知
作者:Zhen Guo, Hongping Gan
源码:https://github.com/ICSResearch/CPP-Net

论文创新点

  1. 深度展开框架:作者提出了CPP-Net,这是一种受Chambolle和Pock近端点算法(CP-PPA)启发的新型深度展开框架。通过将定制的深度学习模块集成到CP-PPA的迭代优化求解器中,CPP-Net能够有效解决稀疏基相关的近端算子问题,从而在压缩感知(CS)任务中实现更高质量的图像重建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值