TIP 2024 | MM-Net:基于MixFormer的多尺度网络用于解剖和功能图像融合

论文信息

题目:MM-Net: A MixFormer-Based Multi-Scale Network for Anatomical and Functional Image Fusion
MM-Net:基于MixFormer的多尺度网络用于解剖和功能图像融合
作者:Yu Liu, Chen Yu, Juan Cheng, Z. Jane Wang, Xun Chen
源码:https://github.com/yuliu316316

论文创新点

  1. 引入改进的MixFormer骨干网络:本文提出了一种改进的基于MixFormer的骨干网络,用于从源图像中提取多尺度的局部特征和全局上下文信息。该网络通过并行结合局部窗口自注意力和深度卷积,并引入双向交互,克服了传统Transformer在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值