TPAMI 2024 | RenAIssance:大模型时代的AI文本到图像生成综述

论文信息

RenAIssance: A Survey Into AI Text-to-Image Generation in the Era of Large Model
RenAIssance:大模型时代的AI文本到图像生成综述
作者:Fengxiang Bie; Yibo Yang; Zhongzhu Zhou; Adam Ghanem; Minjia Zhang; Zhewei Yao; Xiaoxia Wu; Connor Holmes; Pareesa Golnari; David A. Clifton; Yuxiong He; Dacheng Tao; Shuaiwen Leon Song

论文创新点

  1. 扩散模型的应用:扩散模型通过逐步引入噪声并去噪生成图像,成为文本到图像生成的主流方法。其高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值