CVPR 2024 | 基于跨模态特征映射的多模态工业异常检测

论文信息

题目:Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
基于跨模态特征映射的多模态工业异常检测
作者:Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, Luigi Di Stefano
源码:https://cvlab-unibo.github.io/CrossmodalFeatureMapping/

论文创新点

  1. 跨模态特征映射框架:论文提出了一种新颖的跨模态特征映射框架,通过学习在正常样本上将一种模态的特征映射到另一种模态,并通过观察到的特征与映射特征之间的不一致性来检测异常。
  2. 轻量级网络设计:该方法使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值