MICCAI 2023 | 基于条件伯努利扩散模型的医学图像分割

论文信息

题目: BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation
基于条件伯努利扩散模型的医学图像分割
作者:Tao Chen、Chenhui Wang、Hongming Shan
源码:https://github.com/takimailto/BerDiff

论文创新点

  1. 采用伯努利噪声:提出一种基于伯努利噪声的新型条件扩散模型,用于离散二值分割任务,实现准确且多样的医学图像分割掩码。
  2. 高效采样子序列:能够从反向扩散的整体轨迹中高效采样子序列,加速分割过程。通过基于去噪扩散隐式模型(DDIM)的原理,BerDiff可以有效地从反向扩散的整体轨迹中采样子序列,进而加快分割进程。
  3. 性能表现优异
### MICCAI 2024 医学图像分割领域研究方向和技术 #### 自正则化 U-Net 的改进 在医学图像分割任务中,U-Net 是一种广泛使用的架构,因其能够有效处理复杂的像素级分类问题而备受关注。然而,标准 U-Net 存在一些局限性,例如非相关特征的学习以及特征中的冗余信息[^1]。为了克服这些挑战,SelfReg-UNet 提出了通过增强编码器和解码器之间的平衡监督来减少冗余信息的方法。这种方法不仅提高了模型的泛化能力,还显著提升了分割精度。 #### 跨模态医学图像翻译 除了传统的分割方法外,MICCAI 2024 还探讨了基于扩散模型的跨模态医学图像翻译技术。这种技术利用交叉条件扩散模型实现了不同模态间高质量的像转换。具体而言,该方法能够在 T1 加权、T1 增强加权 (T1-Gd)、T2 加权以及 T2 FLAIR 扫描之间进行有效的数据映射[^2]。这对于多参数 MRI 数据的应用具有重要意义,尤其是在 BraTS2023 数据集中所涉及的任务场景下。 #### 多尺度上下文建模 近年来,随着深度学习的发展,越来越多的研究聚焦于如何更好地捕捉医学图像的空间依赖性和全局上下文信息。某些最新工作引入了多尺度注意力机制或金字塔网络结构,从而增强了对复杂病变区域的理解能力和鲁棒性。这类方法通常会结合 Transformer 或卷积神经网络的优势,进一步优化传统 CNN 架构的表现效果。 ```python import torch.nn as nn class MultiScaleContextModel(nn.Module): def __init__(self, input_channels=1, num_classes=2): super(MultiScaleContextModel, self).__init__() # 定义一个多尺度模块 self.scale_1 = nn.Conv2d(input_channels, 64, kernel_size=3, padding=1) self.scale_2 = nn.Conv2d(64, 128, kernel_size=5, padding=2) self.fusion_layer = nn.Conv2d(192, num_classes, kernel_size=1) def forward(self, x): s1_out = self.scale_1(x) s2_out = self.scale_2(s1_out) fused_output = self.fusion_layer(torch.cat([s1_out, s2_out], dim=1)) return fused_output ``` 上述代码展示了一个简单的多尺度上下文建模框架,它可以通过融合来自不同感受野的信息提高分割质量[^3]。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值