点击下方“ReadingPapers”卡片,每天获取顶刊论文解读
论文信息
题目:BSBP-RWKV: Background Suppression with Boundary Preservation for Efficient Medical Image Segmentation
BSBP-RWKV:用于高效医学图像分割的背景抑制与边界保留方法
作者:Xudong Zhou、Tianxiang Chen
论文创新点
首次应用RWKV于医学图像任务:作者首次成功将RWKV应用于医学图像任务,为后续基于RWKV的高效准确方法的发展提供了新的基准和有价值的见解,开拓了医学图像分割研究的新方向。
设计DWT - PMD RWKV模块:结合Perona - Malik扩散(PMD)在抑制噪声且保留边界细节的优势与RWKV的高效结构,设计了DWT - PMD RWKV模块。该模块通过离散小波变换(DWT)与PMD的结合,在抑制背景噪声干扰的同时,能够有效保留病变区域的边界特征,提升分割的准确性。
提出多步龙格 - 库塔卷积模块:鉴于仅靠RWKV设计难以充分提取局部特征,作者提出多步龙格 - 库塔卷积模块。
设计形状优化损失函数:针对现有医学图像分割损失函数在空间域优化的局限性,提出结合频率信息的形状优化损失函数。
摘要
医学图像分割对于疾病诊断和治疗规划具有重要意义。尽管取得了多项进展,但目前大多数方法存在两个问题:一是对抑制影响分割精度的背景噪声干扰重视不足;二是效率不够高,尤其是在处理高分辨率图像时。为应对这两个挑战,作者借助一种传统去噪方法和一种新型高效网络结构,提出了BSBP - RWKV模型,用于实现精确且高效的医学图像分割。具体而言,作者结合了Perona - Malik扩散(PMD)在抑制噪声的同时保留边界细节的优势,以及RWKV高效的结构特点,在编码器的一个分支中设计了DWT - PMD RWKV模块。该模块能够在抑制背景噪声干扰的同时,保留病变区域的边界细节。然后,作者将去噪后的病变边界线索输入到所提出的多步龙格 - 库塔卷积模块中,以补充更多局部细节。此外,作者还提出了一种新颖的形状优化损失函数,该函数可以在空间域和频率域中,使预测的病变区域形状与真实标签掩码对齐。在ISIC 2016和Kvasir - SEG数据集上的实验表明,BSBP - RWKV模型在精度和效率方面表现卓越。具体来说,与当前最优方法相比,BSBP - RWKV模型的复杂度降低了5.8倍,并且在推理过程中,对于每一幅1024×1024的图像,GPU内存使用量减少了62.7%以上。
3. 方法
3.1 概述
作者提出了BSBP - RWKV,这是一种基于PMD和多步龙格 - 库塔方法的医学图像分割框架。如图3所示,编码器采用双分支结构,由级联的DWT - PMD RWKV模块特征提取分支和并行的多步龙格 - 库塔模块分支组成。DWT - PMD RWKV模块特征提取分支用于抑制背景噪声干扰,同时保留病变目标的边界,有助于形状感知分割。多步龙格 - 库塔模块分支旨在将DWT - PMD RWKV模块分支的边界预测与具有准确位置线索的目标主体特征相结合,进一步优化形状。共享主干用于为第一个DWT - PMD RWKV模块获取初始输入,并为第一个多步龙格 - 库塔模块提供部分输入。每个阶段的第一个多步龙格 - 库塔模块的输入由DWT - PMD RWKV模块的输出和上一阶段多步龙格 - 库塔模块的输出组成。生成的特征图随后被输入到普通解码器中,通过四个阶段逐步放大融合后的特征,直到到达分割头生成最终的掩码结果。作者设计了一个特定的损失函数来监督最终的预测。
3.2 DWT - PMD RWKV模块
Perona - Malik扩散(PMD)最初用于图像去噪任务。它可以通过保留图像边界和抑制噪声干扰来提高图像质量。医学图像经常受到背景噪声干扰的影响,有时病变区域边界模糊,这给准确的形状感知医学分割带来了巨大挑战。因此,作者打算构建一个受PMD启发的RWKV模块,作用于特征图,以便在过滤背景干扰的同时,仍能保留一些目标边界线索。
给定一个输入特征图 ,其PMD方程为:
其中 是扩散系数; 是扩散步长,可以看作是特征图所在的层深度; 是一个控制扩散程度的正常数,在作者的实验中默认设置为1。值得注意的是,方程(1)是一个各向异性扩散方程:在梯度幅度较小的平坦或平滑区域( ),扩散系数 较大,这意味着扩散作用强,方程(1)起到高斯平滑的作用,去除噪声干扰;在靠近目标边界的地方,梯度幅度较大( ),系数 接近零,这意味着扩散作用弱,因此可以保留边界细节。
方程(1)也可以改写为以下形式:
其中 和 分别表示特征图在水平和垂直方向上的梯度。
另一方面,输入特征图的离散小波变换(DWT)可以表示为:
其中 表示低频分量,主要反映图像中目标的基本结构。 、 和 分别表示图像在水平、垂直和对角方向上的高频分量,主要捕捉边界细节。通过用 近似 ,用 近似 ,并将扩散步长 设置为1,可以将方程(2)转换为离散形式:
在通过PMD增强特征图后,作者将扩散输出输入到由[13]实现的RWKV层中。通过在一个编码器分支的所有层中堆叠多个DWT - PMD RWKV模块(如图4所示),作者的BSBP - RWKV具备了在保留病变区域边界特征的同时抑制背景噪声干扰的能力。
3.3 多步龙格 - 库塔模块
基于ODE的方法已被证明在分割任务中是有效的。然而,大多数方法基于单步ODE求解器,由于仅使用前一步的信息来进行下一步的预测,不可避免地会导致一定程度的目标特征损失。受多步龙格 - 库塔方法的启发,作者提出了多步龙格 - 库塔模块(如图5所示),该模块输入并整合DWT - PMD RWKV模块的边界输出和目标主体位置特征,以进一步优化形状感知分割的质量。
多步龙格 - 库塔方法优于ResNet所基于的欧拉方法和经典龙格 - 库塔方法,它是一种多步ODE求解器,仅通过前两步的预测就能实现三阶预测精度。它不仅可以利用先前的值进行更精细的近似,而且有研究表明它优于其他常用的多步方法,如三阶Adams - Bashforth方法。多步龙格 - 库塔方法的公式如下:
其中 ,
3.4 形状优化损失
医学图像分割是一个像素级的分类问题,旨在将图像中的每个像素准确分类为目标或背景。通常,这个问题通过交叉熵损失和Dice损失来解决,其中Dice损失由Carole H Sudre等人提出,用于医学图像分割任务,以解决类别不平衡问题。然而,现有的医学图像分割损失函数是在空间域中定义的。当预测的病变区域经过迭代优化,在形状上与真实标签相似时,在空间域中进一步优化模型就变得具有挑战性,这可能导致模型陷入局部最优解。
为了解决上述问题,作者提出了形状优化损失,它通过将基于离散小波变换(DWT)的特定频率损失 与现有的空间损失相结合。当预测掩码和真实标签在空间域中变得相似,模型难以进一步优化时,特别是在病变区域的边界处,该损失可以利用频率线索突出它们之间的差异,帮助模型跳出局部最优解。这是因为频率域线索对目标和背景边界处的梯度差异更为敏感。作者提出的 定义如下:
其中, 和 分别表示通过DWT仅保留低频分量和高频分量的操作。 和 是超参数,且它们的和被约束为等于1。 和 分别代表真实标签和预测掩码。 指的是 和 中的一个像素。
空间损失采用医学图像分割任务中常用的交叉熵损失和Dice损失的组合,它们的定义分别如下:
然后,作者可以定义提出的形状优化损失 如下:
其中, 表示空间域损失和频率域损失之间的平衡系数,设置为0.8。作者的BSBP - RWKV的总体损失函数 包括主要损失 和辅助边界损失 。 采用 的形式, 采用 的形式。总体损失 定义为:
4. 实验


声明
本文内容为论文学习收获分享,受限于知识能力,本文对原文的理解可能存在偏差,最终内容以原论文为准。本文信息旨在传播和学术交流,其内容由作者负责,不代表本号观点。文中作品文字、图片等如涉及内容、版权和其他问题,请及时与作者联系,作者将在第一时间回复并处理。