TIM 2024 | TTSDA-YOLO:一种用于恶劣天气下目标检测的两阶段训练域自适应框架

论文信息

题目:TTSDA-YOLO: A Two Training Stage Domain Adaptation Framework for Object Detection in Adverse Weather
TTSDA-YOLO:一种用于恶劣天气下目标检测的两阶段训练域自适应框架
作者:Mengmeng Zhang, Qiyu Rong, Hongyuan Jing

论文创新点

  1. 提出全新训练策略:提出一种新的训练策略,将训练过程划分为两个阶段。第一阶段利用源域数据训练,借助多尺度图像级域自适应(IDA)模块,使正常天气域逐步适应恶劣天气域,让骨干网络提取域不变特征;第二阶段使用辅助域数据训练,充分挖掘辅助域信息,增强模型迁移学习能力,实现知识从源域到目标域的有效转移。
  2. 设计骨干正则化模块(BRM)</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值