Ranking-Preserving Low-Rank Factorization for Image Annotation With Missing Labels

论文相关内容

本文是解决自动图像注释问题(Automatic image annotation AIA)的,可以看做是多标签图像分类任务

近几十年来,图像自动标注技术得到了广泛的研究。然而,现有的方法通常假设一个正确标记的训练集,这极大地限制了它们对具有不完整标记的实际数据集的应用。由于缺乏对噪声数据的特殊处理,现有的方法大多将缺失的标签视为严格意义上的负标签,导致标记精度下降。针对这些挑战,本文提出了一种新的保留秩低秩因子分解模型。具体来说,我们为每个测试图像构造一个局部训练集,对模型系数矩阵进行低秩矩阵分解,同时捕获标签相关性,降低模型复杂度。此外,为了减少缺失标签带来的模糊性,我们通过样本相似性和标签相关性对标签排序进行正则化,学习预测模型,并将这两个正则化项纳入我们的因子分解方案中。通过将上述所有组件组装在一起,我们的方法避免了基于不可靠数据进行二类决策的需要,因此对于缺少标签更健壮。

本文主要思想和模型

在这里插入图片描述
Z为原始特征空间的模型系数矩阵,Z’x表示为预测标签
在这里插入图片描述
把Z分解为转换矩阵H和转换特征空间HX的模型系数矩阵来捕捉标签相关性并减少复杂度
在这里插入图片描述
总优化目标,第一项表示预测标签和真实标签的成对排序损失具体如下
在这里插入图片描述
在这里插入图片描述
第二项为关于H的学习具体如下
在这里插入图片描述
在这里插入图片描述
基于LLE假设用局部样本重构特征,再去学习H

第三项为关于W的学习与第二项类似
在这里插入图片描述
在这里插入图片描述
基于LLE假设用局部样本重构标签,再去学习W

最后两项为正则化项

总结

1、相关背景:近十年对自动图像标注的研究大部分基于完整标签数据,很少考虑标签的缺失问题。
2、问题是什么:如何在有缺失标签的情况下很好的进行自动图像标注?
3、现有的解决方案:Fasttag, MLR-GL和LRR等方法。
4、作者的核心思想、创新点在哪里:本文模型通过保留排名的低秩矩阵分解来处理缺失标签的图像标注,通过保留相关排名、保留图像相似性和标签相关性来学习模型系数低秩矩阵所分解的基矩阵和系数矩阵去捕捉标签依赖性同时减少模型复杂度。
5、通过什么样的实验进行验证:在4个多标签图像数据集上使用了9个算法6个度量标准进行的实验验证了本文模型性能的先进性。
6、对我的启发:要善于发现,从细微之处、常见却很少被人注重的问题进行研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值