DAY 11有效括号& 删除字符串中的相邻重复项 & 逆波兰表达式

本文介绍了如何使用栈数据结构解决有效括号匹配问题,以及将逆波兰表达式转换为中缀表达式的过程,强调了栈在这些问题中的关键作用。
摘要由CSDN通过智能技术生成

3.有效的括号

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。

示例 1:

输入:s = "()"
输出:true

示例 2:

输入:s = "()[]{}"
输出:true

示例 3:

输入:s = "(]"
输出:false

提示:

  • 1 <= s.length <= 104
  • s 仅由括号 '()[]{}' 组成

思路

class Solution {
public:
    bool isValid(string s) {
		//"{[]}"这种情况就不行,下面的代码只符合(),[],{}这三种情况
		for (int i = 0,j = 1; j < s.size(); i+=2,j+=2)
		{
			int sub = s[j] - s[i];
			if (!(sub > 0 && sub < 3)) {
				return false;
			}
		}
		return true;

		//
    }
};

括号匹配是使用栈解决的经典问题。由于栈结构的特殊性,非常适合做对称匹配类的题目。

编译器在 词法分析的过程中处理括号、花括号等这个符号的逻辑,也是使用了栈这种数据结构。

linux系统中,cd这个进入目录的命令也是栈的应用。

有的同学经常会想学的这些数据结构有什么用,也开发不了什么软件,大多数同学说的软件应该都是可视化的软件例如APP、网站之类的,那都是非常上层的应用了,底层很多功能的实现都是基础的数据结构和算法。

所以数据结构与算法的应用往往隐藏在我们看不到的地方!

首先要弄清楚,字符串里的括号不匹配有几种情况。

建议在写代码之前要分析好有哪几种不匹配的情况,如果不在动手之前分析好,写出的代码也会有很多问题。

先来分析一下 这里有三种不匹配的情况,

  1. 第一种情况,字符串里左方向的括号多余了 ,所以不匹配。 括号匹配1
  2. 第二种情况,括号没有多余,但是 括号的类型没有匹配上。 括号匹配2
  3. 第三种情况,字符串里右方向的括号多余了,所以不匹配。 括号匹配3

我们的代码只要覆盖了这三种不匹配的情况,就不会出问题,可以看出 动手之前分析好题目的重要性。

动画如下:

20.有效括号

第一种情况:已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false

第二种情况:遍历字符串匹配的过程中,发现栈里没有要匹配的字符。所以return false

第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号return false

那么什么时候说明左括号和右括号全都匹配了呢,就是字符串遍历完之后,栈是空的,就说明全都匹配了。

#include<string>
#include<iostream>
#include<stack>
using namespace std;

class Solution {
public:
    bool isValid(string s) {
		if (s.size() % 2 != 0) return false;// 如果s的长度为奇数,一定不符合要求
		stack<char> st;//声明栈
		for (int i = 0; i < s.size(); i++)
		{
			//括号[],{},()的左边起始情况只有3种:(,{,[
			if (s[i] == '(') st.push(')');
			else if (s[i] == '{') st.push('}');
			else if ( s[i] == '[') st.push(']');
			
			//右边")} ["的不符合情况,st不进行入栈操作;
			// 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
			// 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
			else if (st.empty() || st.top() != s[i]) {//
				return false;
			}
			else
			{
				st.pop();//相等,st移除栈顶元素
			}
		}
		// 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
		return st.empty();
    }
};
		

  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

总结

1.括号匹配是使用栈解决的经典问题。由于栈结构的特殊性,非常适合做对称匹配类的题目。匹配问题都是栈的强项

2.在入栈的时候就进行了判断应该入的是括号右边的哪个符号:“}” “]” “)”;方便后面做比较。

4.删除字符串中的所有相邻重复项

给出由小写字母组成的字符串 S重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

示例:

输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。

提示:

  1. 1 <= S.length <= 20000
  2. S 仅由小写英文字母组成。

思路

有效的括号 是匹配左右括号,本题是匹配相邻元素,最后都是做消除的操作。

在删除相邻重复项的时候,其实就是要知道当前遍历的这个元素,我们在前一位是不是遍历过一样数值的元素,那么如何记录前面遍历过的元素呢?

所以就是用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。

1047.删除字符串中的所有相邻重复项

#include<string>
#include<iostream>
#include<stack>
using namespace std;

class Solution {
public:
    string removeDuplicates(string s) {

        stack<char> st;
        string res = "";
        for (int i = 0; i < s.size(); i++)
        {
            if (!st.empty() && s[i] == st.top() ) {//注意这里的先后顺序,必须先判断是否为空
                st.pop();
            }
            else
            {
                st.push(s[i]);
            }
        }
        while (!st.empty())// 将栈中元素放到result字符串汇总,但这里的顺序发生了变化
        {
            res += st.top();
            st.pop();
        }
        reverse(res.begin(), res.end());// 此时字符串需要反转一下
        cout << res << endl;
        return res;

    }
};

int main() {
    Solution solute;
    solute.removeDuplicates("abbaca");

    system("pause");
    return 0;
}
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

当然可以拿字符串直接作为栈,这样省去了栈还要转为字符串的操作。

class Solution {
public:
    string removeDuplicates(string S) {
        string result;
        for(char s : S) {
            if(result.empty() || result.back() != s) {
                result.push_back(s);
            }
            else {
                result.pop_back();
            }
        }
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1),返回值不计空间复杂度

总结

1.string字符串的result.push_back(s); result.pop_back(); 尾部添加、删除元素操作

2.没思路,但看了后又比较简单。最初想用双指针来做,就比较复杂。

class Solution {//双指针
    public String removeDuplicates(String s) {
        char[] ch = s.toCharArray();
        int fast = 0;
        int slow = 0;
        while(fast < s.length()){
            // 直接用fast指针覆盖slow指针的值
            ch[slow] = ch[fast];
            // 遇到前后相同值的,就跳过,即slow指针后退一步,下次循环就可以直接被覆盖掉了
            if(slow > 0 && ch[slow] == ch[slow - 1]){//消除之后又有新的元素可能挨在一起,判断前一个
                slow--;//重复,slow回退到前一个位置;下一次循环时被覆盖
            }else{
                slow++;//不重复,slow++
            }
            fast++;
        }
        return new String(ch,0,slow);
    }
}

这道题目就像是我们玩过的游戏对对碰,如果相同的元素挨在一起就要消除。

可能我们在玩游戏的时候感觉理所当然应该消除,但程序又怎么知道该如何消除呢,特别是消除之后又有新的元素可能挨在一起。

编程语言的一些功能实现也会使用栈结构,实现函数递归调用有时候就需要栈。

递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

一种错误就是栈溢出,系统输出的异常是Segmentation fault(当然不是所有的Segmentation fault 都是栈溢出导致的) ,如果你使用了递归,就要想一想是不是无限递归了,那么系统调用栈就会溢出。

而且在企业项目开发中,尽量不要使用递归!在项目比较大的时候,由于参数多,全局变量等等,使用递归很容易判断不充分return的条件,非常容易无限递归(或者递归层级过深),造成栈溢出错误(这种问题还不好排查!)

5.逆波兰表达式求值

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 '+''-''*''/'
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 是一个算符("+""-""*""/"),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。我们习惯看到的表达式都是中缀表达式:4 + 13 /5;

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

思路

上一题中提到: 递归就是用栈来实现的。所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。

那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。

但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后序遍历的方式把二叉树序列化了,就可以了。

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        // 力扣修改了后台测试数据,需要用longlong
        stack<long long> st; 
        for (int i = 0; i < tokens.size(); i++) {
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
                long long num1 = st.top();
                st.pop();
                long long num2 = st.top();
                st.pop();
                if (tokens[i] == "+") st.push(num2 + num1);
                if (tokens[i] == "-") st.push(num2 - num1);
                if (tokens[i] == "*") st.push(num2 * num1);
                if (tokens[i] == "/") st.push(num2 / num1);
            } else {
                st.push(stoll(tokens[i]));//stoll() 是 C++ 中的一个函数,用于将字符串转换为长长整型(long long int)
                //如果转换成功,则返回转换后的长长整型值;如果转换失败,则返回0
            }
        }

        int result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
        return result;
    }
};

题外话

我们习惯看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。

例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算符,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法,你说麻不麻烦!

那么将中缀表达式,转化为后缀表达式之后:[“4”, “13”, “5”, “/”, “+”] ,就不一样了,计算机可以利用栈来顺序处理,不需要考虑优先级了。也不用回退了, 所以后缀表达式对计算机来说是非常友好的。

可以说本题不仅仅是一道好题,也展现出计算机的思考方式。

在1970年代和1980年代,惠普在其所有台式和手持式计算器中都使用了RPN(后缀表达式),直到2020年代仍在某些模型中使用了RPN。

总结

1.代码一直报错不清楚原因

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值