Once for All: Train One Network and Specialize it for Efficient Deployment

介绍了一种名为OFA的网络架构,它可以在不同部署场景下选择专用子网络,无需重复训练。通过一次训练,OFA网络能提供多个准确度-延迟权衡方案,实验证明,其子网络的准确率不低于甚至高于独立训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述在这里插入图片描述
训练一个OFA网络,(深度、宽度、核大小和分辨率各异)。根据部署场景,无需训练,直接从该 OFA 网络中选择一个专用子网络。在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
OFA 网络之后再使用模型选择,可以实现很多准确度-延迟权衡,而整个过程仅需训练一次。在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
———————————————————————————————在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
所有子网络权重都是从OFA中获取的,只需训练一次,训练时间为200h。
—————————————————————————————————实验在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
我们是在分辨率224x224下测试的结果,采用了8个子网进行比较,其中independent表示独立训练子网络的准确率,下面使我们用渐进式收缩,来比较的准确率,相较于独立训练相同或者更高。在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值