

训练一个OFA网络,(深度、宽度、核大小和分辨率各异)。根据部署场景,无需训练,直接从该 OFA 网络中选择一个专用子网络。



OFA 网络之后再使用模型选择,可以实现很多准确度-延迟权衡,而整个过程仅需训练一次。






———————————————————————————————




所有子网络权重都是从OFA中获取的,只需训练一次,训练时间为200h。
—————————————————————————————————实验





我们是在分辨率224x224下测试的结果,采用了8个子网进行比较,其中independent表示独立训练子网络的准确率,下面使我们用渐进式收缩,来比较的准确率,相较于独立训练相同或者更高。






Once for All: Train One Network and Specialize it for Efficient Deployment
最新推荐文章于 2025-03-05 10:50:36 发布
介绍了一种名为OFA的网络架构,它可以在不同部署场景下选择专用子网络,无需重复训练。通过一次训练,OFA网络能提供多个准确度-延迟权衡方案,实验证明,其子网络的准确率不低于甚至高于独立训练。

6826

被折叠的 条评论
为什么被折叠?



