BERT encoder-attention计算逻辑

6 篇文章 1 订阅
4 篇文章 0 订阅

encoder中最重要的莫过于attention的计算了,本章对照代码讲解一下计算逻辑,主要是python改成c++时候要注意一些shape,并且减少tanspose的使用,使用Intel mkl中的矩阵计算API,例如cblas,cblas_batch等等。

1.qkv合并------>Dense(input * qkv_weight + qkv_bias)------->split分开
分开后q=k=v shape为

(batch_size, seq_len, number_of_head, int(embedding_size / number_of_head)

2.此时的q,k,v并不能直接matmul,需要经过transpose,此时shape变成了

(batch_size, number_of_head, seq_len, feature_size)

3.对(2)产生的q与transpose(k)进行matmul,除以sqrt(embedding_size / number_of_head),生成中间变量的shape为

(batch_size, number_of_head, seq_len, seq_len)

4.对(3)的中间变量进行apply_mask,增加偏移量-10000,随后进行softmax。

5.(4)生成的值与value进行matmul,shape为

(batch_size, number_of_head, seq_len, feature_size)

完成attention操作

——————————————————————————————————————————
此部分为encoder中attention后续的计算
6.(5)中的output---->Dense---->layerNorm---->Dense---->gelu---->>Dense---->layerNorm

其中gelu使用erf高斯近似,可能会有一些误差。

def gelu(input_tensor):
	cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
	return input_tesnsor*cdf

layerNorm原理就是 ,也就是hidden_size维做Normalization

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        # mean(-1) 表示 mean(len(x)), 这里的-1就是最后一个维度,也就是hidden_size维
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值