机器学习算法基础5-决策树与随机森林

决策树与随机森林

一、决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法

1.决策树之信息论基础

信息熵的概念

案例:每猜一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军?
我可以把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,
就可以知道结果。
该案例中信息熵为:
H = -(p1logp1 + p2logp2 + … + p32log32)

信息和消除不确定性是相联系的,即信息熵越大,不确定性越大

H的专业术语称之为信息熵,单位为比特。
公式:
在这里插入图片描述

在这里插入图片描述

2.决策树的划分依据- 信息增益

决策树的分类依据之一:信息增益
:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D
的信息条件熵H(D|A)之差,即公式为:
在这里插入图片描述

信息增益计算
在这里插入图片描述
在这里插入图片描述

3.常见决策树使用的算法

ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 ,划分更加仔细 最小的准则 在sklearn中可以选择划分的原则

4.sklearn决策树API

# 决策树分类器
class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
random_state=None)

# 参数介绍
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子

# 方法
decision_path:返回决策树

5.决策树案例-泰坦尼克号乘客生存分类

泰坦尼克号乘客生存分类模型流程

  • 1、pd读取数据
  • 2、选择有影响的特征,处理缺失值(age数据存在缺失)
    特征值pclass-社会经济阶层的代表-字符串
    特征值age-年龄-浮点数
    特征值sex-性别
    目标值survived-存活-布尔类型(0、1)
  • 3、进行特征工程,pd转换字典,特征抽取;x_train.to_dict(orient=“records”)
  • 4、决策树估计器流程

决策树的结构、本地保存

  • 1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式
    tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
  • 2、工具:(能够将dot文件转换为pdf、png)
    安装graphviz(这个模块不好安装)
    这个功能太鸡肋了。所以这个包都没人用了,停止维护好久了。还是停留在很老的版本。和很多内置的包都不匹配了。
  • 3、运行命令
    然后我们运行这个命令
    $ dot -Tpng tree.dot -o tree.png
# 决策树对泰坦尼克号乘客生存进行分类
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def decision():
    '''泰坦尼克号乘客生存分析
    :return'''
    # 一、pd读取数据
    titanic = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 二、处理数据
    # 1.取出特征值与目标值
    x = titanic[['pclass', 'age',  'sex']]
    y = titanic['survived']

    # 2.处理缺失值
    x['age'].fillna(x['age'].mean(), inplace= True)
    # 3.分割数据集到训练集与测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y ,test_size=0.25)

    # 三、进行特征工程
    # 1.特征抽取
    # 将有类别特征的数据转换成字典数据,x_train.to_dict(orient = 'records')
    # 然后再把字典中一些类别数据,分别转换成特征(one-hot编码)
    dict = DictVectorizer(sparse= False)
    x_train = dict.fit_transform(x_train.to_dict(orient = 'records'))

    # transform按照原先标准转换
    x_test = dict.transform(x_test.to_dict(orient = 'records'))

    # 返回类别数据
    print(dict.get_feature_names())
    print(x_train)

    # 四、决策树估计器流程
    dec = DecisionTreeClassifier()

    dec.fit(x_train, y_train)

    # 得到预测结果
    print('预测结果为:\n',dec.predict(x_test))
    # 预测准确率
    print('预测准确率为:\n',dec.score(x_test, y_test))

    # 导出决策树的结构
    export_graphviz(dec, out_file='./tree.dot', feature_names=['年龄', '一等', '二等', '三等', '女', '男'])

    return None

if __name__ == '__main__':
    decision()

# ['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
# [[ 9.          0.          0.          1.          0.          1.        ]
#  [31.19418104  1.          0.          0.          0.          1.        ]
#  [59.          1.          0.          0.          1.          0.        ]
#  ...
#  [21.          0.          0.          1.          0.          1.        ]
#  [31.19418104  0.          0.          1.          1.          0.        ]
#  [31.19418104  0.          0.          1.          0.          1.        ]]
# 预测结果为:
#  [0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0
#  1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
#  0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
#  0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0
#  0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#  0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0
#  0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
#  0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
#  0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0]
# 预测准确率为:
#  0.7963525835866262

决策树的结构、本地保存

  • 1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式
    tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
  • 2、工具:(能够将dot文件转换为pdf、png)
    安装graphviz
    ubuntu:sudo apt-get install graphviz Mac:brew install graphviz
  • 3、运行命令
    然后我们运行这个命令
    $ dot -Tpng tree.dot -o tree.png
    (Windows参考:https://www.cnblogs.com/onemorepoint/p/8310996.html)

6.决策树的优点与缺点

注:企业重要决策,由于决策树很好得分析能力,在决策过程应用较多
优点
1.简单的理解和解释,树木可视化。
2 。需要很少的数据准备,其他技术通常需要数据归一化,
缺点
1.决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合
2.决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成
** **:

  • 减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
    在这里插入图片描述
    当样例少于多少或者大于得枝删掉
  • 随机森林

二、随机森林-集成学习方法

1.集成学习方法、随机森林的概念

集成学习方法
集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型
各自独立地学习和作出预测。这些预测最后结合成单预测因此优于任何一个单分类的做出预测。

什么是随机森林?
定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

2.算法原理介绍

学习算法
根据下列算法而建造每棵树:
用N来表示训练用例(样本)的个数,M表示特征数目。

  • 1.从N个训练用例(样本)中以有放回抽样的方式每次取一个,取样N次,形成一个训练集(即bootstrap取样:随机有放回的抽样),并用未抽到的用例(样本)作预测,评估其误差。
  • 2.输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。

为什么要随机抽样训练集?  
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

3.集成学习API

# 随机森林分类器
#ensemble集成学
class sklearn.ensemble.RandomForestClassifier(n_estimators=10, 
criterion=’gini’,max_depth=None, bootstrap=True, random_state=None)

# 参数
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
max_features = "auto",每个决策树的最大特征数量

超参数:n_estimators:决策树的数量100,200,300,500,800,1200
max_depth:每棵树的深度限制5,8,15,25,30

在这里插入图片描述

4. 随机森林调优-泰坦尼克号乘客生存分析

# 随机森林调优-泰坦尼克号乘客生存分析
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

def forest():
    '''
    随机森林模型选择与调优
    :return:
    '''
    # 一.读取数据
    titanic = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 二、处理数据

    # 1.提取特征值与目标值
    x = titanic[['pclass','age','sex']]
    y = titanic['survived']

    # 2.处理age中的缺失值
    x['age'].fillna(x['age'].mean(),inplace=True)

    # 3.分割数据集  训练集与测试集、
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)

    # 三、进行特征工程

    # 特征抽取
    # 将特征值的类别特征数据转换成字典数据
    # 再将类别数据转换成one-hot编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient='records'))
    x_test = dict.transform(x_test.to_dict(orient='records'))
    # 返回类别数据
    print(dict.get_feature_names())
    print(x_train)

    # 四、随机森林-模型的选择与调优

    # 1.构造实例
    rf = RandomForestClassifier()
    # 2.交叉验证与网格搜索
    param = {'n_estimators':[100,200,300,500,800,1200],'max_depth':[5,8,15,25,30 ]}
    gc = GridSearchCV(rf,param_grid=param,cv=5)

    gc.fit(x_train,y_train)
    # 准确率
    print('准确率是:\n',gc.score(x_test,y_test))
    # 在交叉验证中最好的结果
    print('交叉验证中最好的结果是:\n',gc.best_score_)
    # 最好的参数模型
    print('最好的参数模型:\n',gc.best_estimator_)
    # 查看选择的参数模型
    print('查看选择的参数模型:\n',gc.best_params_)


if __name__ == '__main__':
    forest()
    

# ['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
# [[53.          0.          1.          0.          1.          0.        ]
#  [31.19418104  0.          0.          1.          0.          1.        ]
#  [31.19418104  0.          0.          1.          0.          1.        ]
#  ...
#  [31.19418104  1.          0.          0.          1.          0.        ]
#  [31.19418104  0.          0.          1.          0.          1.        ]
#  [25.          1.          0.          0.          0.          1.        ]]
# 准确率是:
#  0.8267477203647416
# 交叉验证中最好的结果是:
#  0.8201219512195121
# 最好的参数模型:
#  RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
#             max_depth=5, max_features='auto', max_leaf_nodes=None,
#             min_impurity_decrease=0.0, min_impurity_split=None,
#             min_samples_leaf=1, min_samples_split=2,
#             min_weight_fraction_leaf=0.0, n_estimators=800, n_jobs=None,
#             oob_score=False, random_state=None, verbose=0,
#             warm_start=False)
# 查看选择的参数模型:
#  {'max_depth': 5, 'n_estimators': 800}

5.随机森林的优点与缺点

随机森林的优点

  • 1.在当前所有算法中,具有极好的准确率
  • 2.能够有效地运行在大数据集上
  • 3.能够处理具有高维特征的输入样本,而且不需要降维
  • 4.能够评估各个特征在分类问题上的重要性
  • 5.对于缺省值问题也能够获得很好得结果
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值