python 几天不用就觉得生疏,因此记录一下:便于下次使用:
import numpy as np
生成方式:
np.array();np.arange();np.linspace();
随机数:
np.random.random((2,3));np.random.randint(10,size=());np.random.rand(2,5);np.random.normal(())
切片:
x[:],x[0,:]
拼接过程:
np.concatenate([x,y])#默认按第一个轴合并,即横轴
np.vstack([x,y])#竖直栈,表示行数扩充
np.hstack([x,y])#水平栈,表示列数扩增
数组的分裂:
np.split(x,[n,m])#将数组进行拆分,以n、m分别为拆分点,最后拆成拆分点+1;0-n-1、n-m-1,m-结束
np.vsplit(x,[])#按照行进行拆分
np.hsplit(x,[])#按照列进行拆分
numpy数组具有的广播机制(通用函数):
np.array()+10;np.add(x,2);np.subtract、np.multiply、np.divide、np.power、np.mod
三角函数:
np.sin\cos\tan,以及反函数arcsin、arccos、arctan
np内置的聚合函数,速度较快:
np.sum,np.max,np.min,M为一个array,M.sum(axis=0)#按照列进行聚合,axis=1按照行进行聚合
np.prod#计算元素的乘积,np.mean,np.std,np.var,np.argmax/argmin,np.any/np.all#验证任何一个/所有元素是否为真
np可以用来进行判断:m>5,则可以返回一个
true or false,然后进行计算,true处理为1,m.sum(m>3),可以用来判断数组中某些值的个数
m[tind]#tind存放着表示索引的数组,如tind可为[1,252]
python---Numpy基本操作
最新推荐文章于 2022-05-21 11:30:30 发布