电磁电路设计及优化完全自动化的历史发展过程

文章回顾了从电路优化到电磁优化的发展,介绍了伴随灵敏度技术、极小极大算法、空间映射以及基于代理模型和贝叶斯方法的优化在微波工程中的应用。这些技术逐渐被接纳并成为解决设计挑战的关键工具,展示了自动化设计的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明

本文基本上是完全翻译精选了以下文献,原作者:John W. Bandler。
仅限于知识的传播,详细引用可以参考原文章。
有何指点与建议,可以在文章下面留言。

J. W. Bandler and J. E. Rayas-Sánchez, “An Early History of Optimization Technology for Automated Design of Microwave Circuits,” in IEEE Journal of Microwaves, vol. 3, no. 1, pp. 319-337, Jan. 2023, doi: 10.1109/JMW.2022.3225012.

1 导论

早期(1960s以前),电路理论和电磁学专家相信,对问题的“感觉”比计算机的新兴使用所提供的任何优势都要更高明,所以抗拒自动化。学术界和实践者甚至都反对使用数字计算机进行算法电路设计。一些有影响力的电气工程师认为计算机辅助设计 (CAD) 和优化“不是工程”,不适合工程教育。尽管如此,开创性的优化贡献在 1960 年代就已经在进行,主要基于没有衍生信息的启发式搜索方法

  • 第一种基于梯度的优化方法,主要是拟牛顿(quasi-Newton)方法,在 1970 年代被迅速采用。到那时,自动优化已经被视为微波 CAD 领域最重要的进步。在 1970 年代和 1980 年代,数学家 Kaj Madsen和他在丹麦技术大学的研究小组开发了强大的 minimax 和相关的数学上严格的算法,巩固了用于电路设计优化的拟牛顿梯度法。第一个基于梯度的直接电磁设计优化方法,专门针对微波滤波器,出现在 1990 年代初期。
  • 1993 年,认识到迫切需要有效的电磁优化,同时对所谓工程师对问题的“感觉”和“模型”的认知概念的奥秘感到困惑,在访问丹麦的马德森后,班德勒发明了空间映射[space mapping]。在同一年,还出现了用于射频和微波设计优化的人工神经网络 (ANN)。空间映射、替代模型[surrogate modeling]、人工神经网络[ANN]及其组合的微波设计优化的突出应用在 2000 年代和 2010 年代蓬勃发展。

过去二十年证实了:基于知识的技术在解决微波设计优化挑战方面占主导地位。
以下,详细介绍射频和微波设计优化方法和技术的早期历史。它突出了微波设计优化几个重叠的时间阶段的主要里程碑:1)面向电路的优化方法;2)直接电磁优化技术;3)空间映射优化和替代方法;4) 替代方法和贝叶斯方法;5)认知驱动设计。(1) circuit-oriented optimization methods; 2) direct electromagnetic optimization techniques; 3) space mapping optimization and surrogate approaches; 4) surrogate methodologies and Bayesian approaches; and 5) cognition-driven design.)

2 对电路的微波优化

成功的微波设计数值优化方法首先应用于等效集总和分布式电路模型,基于梯度的方法最为流行。

A. 具有伴随灵敏度的梯度优化法

突破性的伴随灵敏度技术可以低成本计算设计参数的准确响应导数。Director 和 Rohrer 在 1969 年关于集总电路伴随灵敏度的里程碑在 1970 年代扩展到分布式电路,以及波变量的一阶和二阶灵敏度。伴随灵敏度技术最多需要两次全电路仿真,一次是原始电路,一次是适当激励的伴随电路,无论设计参数的数量多少。

在随后的二十年中,CAD 供应商很少关注伴随敏感性,这主要是由于实施的复杂性和市场兴趣不明。相比之下,响应曲面建模和插值更容易实现。90年代,随着 CAD 转向面向电磁学的设计优化 ,人们对伴随灵敏度重新产生了兴趣。

B. 最小 PTH 和 Minimax 目标和算法

1970 年代和 80 年代的另一个突破是用于设计优化的有效最小pth和minimax 算法的出现。在微波设计中发挥重要作用并后来为设计中心和有源器件建模和参数提取铺平了道路。这些优化方法在 1980 年代、90 年代及以后的商业软件中得到了应用。

C. 产量or成本驱动的微波设计

在整个 1980 年代和 1990 年代,使用单侧L 1、单侧 Huber 公式和一系列先进的L 1、L 2开发了用于良率驱动设计的工业可实施优化算法和 minimax 优化器,具有精确和近似梯度。
L 2(最小二乘或欧几里得范数,p = 2)对粗差非常敏感(离群值显着影响其性能),而L 1(L 1 -范数,1-范数,或曼哈顿范数,p= 1) 对“野生”数据更稳健,但会因小错误而产生偏差。Huber 是这两者的混合体,处理L 1意义上的大错误和L 2意义上的小错误。
鉴于其处理不良起点的特性、在存在大小错误时的稳健性和一致性,Huber 被证明在统计设备建模、模拟故障定位和设计中心方面极其有效

D. 极小极大优化

基于数学家 Kaj Madsen 和他在丹麦技术大学的团队之前的工作,在1980 年代成功应用了微波等效电路的极小极大(等波纹)优化的一些设计应用案例。
具有代表性的 minimax 设计优化示例包括:阻抗变换器、叉指滤波器和微波反射放大器;波导流形多路复用器,具有多达 240 个优化变量,遵循自动分解算法;以及通过梯度近似的加权更新优化的五通道多路复用器。

E. 非线性电路设计优化

80 年代在非线性微波电路仿真、互调、频率转换、稳定性、噪声分析、灵敏度分析和优化方面取得了重大进展,利用了谐波平衡技术。
20 世纪 90 年代初期,关键进展是将最先进的优化与高效的谐波平衡仿真相结合,从而开发出强大的非线性微波电路设计优化方法。通过统一 FAST(可行的伴随灵敏度技术:精确伴随与扰动相结合)和直流、小信号和大信号,解决了在大信号周期性激励下稳态运行的非线性微波电路的良率驱动优化艰巨问题模拟实现了良率驱动的微波有源器件建模和电路设计通过将基于物理的 MESFET 模型与谐波平衡仿真和优化相集成。开发了商业 CAD 工具,用于利用L 1、L 2极小极大优化器进行稳健的基于 FET 模型测量的参数提取,后来通过 FAST 和 Huber 优化器增强的统计建模推广到非线性器件表征。
将C、D两个技术也集成到了一起。

3 对电磁版图的直接微波优化

考虑到计算成本,在 1980 年代和 90 年代初期,将全波电磁模拟器置于优化循环中对许多人来说是可笑的。当时学术界和工业界的电磁仿真专家认为这简直就是荒谬。他们无法设想 HFSS和 Ansoft 的 Maxwell 适合直接优化。然而,他们错了,应用于微波滤波器设计的第一个基于梯度的直接电磁优化过程发表于 1993 年,它利用响应曲面建模平滑梯度估计数据库更新来克服计算挑战。

直接电磁优化的后续发展包括使用伴随灵敏度的基于梯度的方法。基于相关 FEM 系统矩阵的分析导数计算 S 参数灵敏度的初始“精确”灵敏度在商业 FEM 求解器中已经商业化实施。现在可以获得基于场的灵敏度的有前途的精确分析表达式,而不特定于任何特定的电磁分析技术或网格划分策略。
最近一种加速直接电磁优化的策略是在内部修改分析方法(FEM),将优化算法作为模拟执行的一部分,这样,电磁仿真和设计优化就可以同时完成。

4 商业优化工具:接受的十年

直到 20 世纪 80 年代初期,用于微波电路优化的面向计算机的迭代方法都被视为奇葩,无论是有影响力的电路理论“综合”纯粹主义者还是“具体细节”工程师都没有认真对待。从本质上讲,计算机是超快的电子计算器。计算机可以通过简单的、看似反复试验的算法驱动的重复分析,以某种方式“创建”最佳设计的前景一定是令人恐惧的,而且在电磁学领域,这是不可想象的。

A 美国国防部 MIMIC(微波/毫米波单片集成电路)计划的影响

美国国防部 MIMIC(微波/毫米波单片集成电路)计划启动了为期 7 年、耗资 5 亿美元的微波优化商业 EDA 工具的研究,其在行业中逐渐被广泛接受。 1986,为了实现其目标,MIMIC 计划旨在“大幅改进计算机辅助设计模型和工具” ,提供资源和结构,使从设计自动化研究过渡到高效且负担得起的砷化镓技术 MIMIC 可制造生产成为可能广泛的应用,包括军事和商业。
MIMIC 计划引爆了晶圆/芯片良率预测和优化的快速发展,包括最先进的器件统计、测量不确定性、最坏情况设计、设计中心化以及线性和非线性电路的公差分配。

B. 优化系统协会(OSA)

OSA被惠普收购,后来并入EEsof。到 1997 年,OSA包括了最先进的优化算法,包括基于梯度(极小极大、L 1、L 2、Huber、拟牛顿、共轭梯度、产量驱动)和基于直接搜索的优化算法(单纯形、随机、模拟退火)。获得了市场的来自学者和从业者的一致好评。

5 空间映射优化和替代方法

1994 年,空间映射震惊了 RF 和微波社区。其实这种方法,尤其是激进的空间映射,从人类的日常经验到具有电磁精度的复杂系统的专家调整和设计,大家都有意或无意地已经在各种活动中利用空间映射概念了,只不过一直没人把它量化。

A 对空间映射的初步反应

在1994年的IMS会议上,大家总之就是一个激动!
抛出问题:为什么经验丰富的滤波器设计人员能很快设计出好的解决方案?一定是存在一个又快又近似的电路模型,能高保真地进行电磁验证。如何平衡这两种仿真呢?既保留电路模型的速度,又能利用电磁模型的准确性。

B.空间映射的本质

SM可以通过迭代将粗模型的准确度增强到细模型的水平,方法是模拟专家的直觉,利用可用的、快速的、参数化的和基于物理的简化模型。普通空间映射可能会失败(对应工程师的直觉经常失败)。
空间映射概念由 Bandler 于 1993 年发现,1994 年发表
激进空间映射(ASM)产生于Madsen的认识,即使用相应的粗略模型作为有效的准全局近似来优化一个精细模型,相当于解决一个非线性方程组,而非线性方程则得益于Broyden的更新雅各布系数的方法。从本质上讲,ASM算法迭代地寻找以下非线性方程组的解:

f ( x f ) = 0 = p ( x f ) − x c ∗ \begin{equation*} {\boldsymbol{f}}({{\boldsymbol{x}}}_{\mathrm{f}}) = \bf{0} = {\boldsymbol{p}}({{\boldsymbol{x}}}_{\mathrm{f}}) - {\boldsymbol{x}}_{\mathrm{c}}^* \end{equation*} f(xf)=0=p(xf)xc

其中 p ( x f ) \boldsymbol{p}(\boldsymbol{x}_\mathrm{f}) p(xf) 代表从细模型设计空间 x f \boldsymbol{x}_f xf到粗模型设计空间 x c \boldsymbol{x}_c xc的映射, x c ∗ \boldsymbol{x}_{\mathrm{c}}^* xc是优化的粗模型设计(简单来说,前者就是将电磁模型转化为电路模型的函数,后者是一个优化的电路模型)。上式的解 x f S M \boldsymbol{x}_{\mathrm{f}}^{\boldsymbol{SM}} xfSM就是空间映射的解,表明该解在电磁细模型中的响应 R f ( x f S M ) \boldsymbol{R}_f(\boldsymbol{x}_{\mathrm{f}}^{\boldsymbol{SM}}) Rf(xfSM)和电路粗模型优化响应 R c ( x c S M ) \boldsymbol{R}_c(\boldsymbol{x}_{\mathrm{c}}^{\boldsymbol{SM}}) Rc(xcSM)基本吻合了,后者为目标响应。这种方案可能有多种解。

C.空间映射的扩展——扩展与应用

1998年,与卡尔顿大学合作后,空间映射与人工神经网络联系了起来,用于射频和微波建模和设计优化。2002年,与西班牙瓦伦西亚理工大学合作,发现了空间映射在波导滤波器设计中的创新应用,促进了空间测绘的广泛传播。
空间映射公式变体中,与常见工程实践最密切相关的三种是积极的(aggressive)、隐式(implicit)的和调整(tuning)空间映射算法。第一个是迄今为止最受欢迎的。隐式空间映射利用非优化变量的粗模型预选参数来迭代增强映射的粗模型,其直接优化产生下一次迭代。调谐空间映射利用调谐端口、可调集总元件和固定电磁模型构建快速调谐模型,以实现电磁精度的直接优化。
输出空间映射遵循更受数学而非工程启发的方法,通过直接校正粗略模型响应以更好地匹配精细模型响应模型。
综合或逆向建模空间映射方法也已成功用于射频和微波设计。通过神经或线性映射,简单评估最优粗模型设计中的当前逆映射,可预测下一次迭代。
尽管空间映射成为优化高保真模型的有效解决方案,但它也很快被扩展到开发空间映射模型以进行准确且廉价的统计分析和产量优化。
檀香山 IMS-2017 空间测绘发展的重要贡献者。从左到右:Bandler、Yu、Boria、Nikolova、Rayas-Sánchez、Zhang 和 Biernacki。

D. 空间映射在射频和微波之外的应用

尽管它始于微波工程领域,但空间映射优化已在众多不同学科中得到应用。例如,简单的线性输入以及积极的空间映射已应用于材料设计、环境科学、医疗仪器、磁路、电动机、化学、民用、机械、生物医学、空气动力学、航空和航天工程等领域。

E. 基于测量的空间映射

各种商用 EDA 软件可作为实现优化结构的细模型,最近,基于测量的物理平台也可作为“精细模型”。

F. 空间映射遇到代理建模(物理与数学)

数学家随后使用基于泰勒(线性和/或二次)的非物理局部粗模型作为其潜在的“替代品”,而面向空间映射的工程师则使用基于工程知识的准全局物理模型来支持他们的算法。使用抽象数学模型的直接电磁优化算法与熟练的工程师通过对问题的经验测试“感觉”可以实现的结果大相径庭。

6 替代方法与贝叶斯方法

Slawek Koziel于 2004 年至 2007 年在麦克马斯特大学班德勒的模拟优化系统研究实验室工作。他运用自己的数学背景,在基于数学的代理优化技术以及空间映射的理论基础方面取得了突破性进展。现在,在冰岛雷克雅未克大学,他无疑是在代理方法及其应用方面最知名的研究人员。Koziel 和他的团队带头创新了电磁仿真驱动和基于代理的微波电路和天线设计优化程序,包括可变保真度优化框架;代理辅助调整、产量估计和多目标优化; 反向代理快速重新设计的方法;微波元件小型化 ; 降维和域限制代理;基于响应特征的标称设计 , 良率优化,以及通过公差最大化进行稳健设计。
John Bandler(左)和Slawomir Koziel(右) 在宾夕法尼亚州费城的 IMS-2018。
贝叶斯方法适用于处理计算量大的模型,尤其是那些具有噪声损坏响应的模型,包括基于受统计不确定性和变化的操作或环境条件影响的物理测量的高保真模型。贝叶斯优化已成功应用于微波功率放大器的设计、信号完整性和高速信道、射频高维全局优化,微带滤波器的并行电磁优化,以及通过 ANN 增强高斯过程进行射频电路设计等领域。

7 认知驱动(Cognition-Driven)设计

空间映射与人类认知(工程师对问题的传统但神秘的“感觉”)之间存在明显的相似之处:

  1. 空间映射的简单、直观的例子,如奶酪切割问题
  2. Rayas-Sánchez 所展示的激进空间映射的流行
  3. 在 Kahneman 中发现的与空间映射的相似之处:他的系统 1 快速而直观,而他的系统 2 缓慢而费力
  4. 使用响应特征等认知风格标记进行基于空间映射的设计的进展

Bandler 创建了几个简单的激进空间映射概念插图。他们从所谓的“切奶酪”插图开始,然后是“楔子问题”、“切蛋糕”、“选择鞋子”、“降落伞游戏”如下图,以及其他插图或游戏。
空间映射降落伞着陆图(a) 可能在目标上方垂直初始对齐(如果没有关于预期轨迹的信息);(b) 着陆偏离目标;(c) 下一个降落伞的下一次对准,考虑到第一次迭代的结果。迭代以这种方式继续。
在凤凰城的 IMS-2015 期间,当 Bandler 私下向 Rayas-Sánchez 展示“降落伞着陆游戏”时,Rayas-Sánchez 感到困惑。这个一维任务与微波设计优化有什么关系?直到 Rayas-Sánchez 在 Bandler 的笔记本电脑上试玩这款游戏,他才确定了游戏的固有“精细模型”和他自己不断发展的心智“粗略模型”之间的关系(校准)。所需任务似乎有三个重叠阶段,(1) 熟悉阶段(建立知识和确认心智模型),(2) 完善阶段(在每次重置时重玩游戏时学习信任心智模型), (3) 映射更新阶段(意识到下一次迭代的“最佳”猜测需要来自比前一次迭代更多的信息)。
积极的空间映射有效地调用了传统优化的内部循环(工作中的常识),通常在几次迭代中产生出色的结果。积极的空间映射更新/执行过程本身就是更高层次的优化——元优化?——一个不可思议地模仿常识和专家‘感觉’的过程。
马德森感到震惊,因为圈内外的许多人仍然感到震惊,空间映射竟然可以简化为常识,比如不太热也不太冷,恰到好处
如果我们从常识、人类经验、空间映射等方面考虑认知驱动的设计方法——以及机器学习和人工智能,我们可能会寻找与心理学家、神经科学家、游戏开发者相互合作和对话的新途径,语言学家,剧作家等,并与人类受试者一起工作并探索情感因素。

8 结论

2023 年标志着自 1993 年以来工程优化,特别是微波电磁优化,已经利用空间测绘技术和相关替代方法的 30 年。Bandler 在微波、计算机辅助设计以及电路和系统优化方面花费了 30 年的研究才达到了这个半途里程碑,30 年期间工程师的神秘感被证明是难以捉摸的,这 30 年里充满了有远见的人和数字和计算的拥护者。设计优化的迭代技术,以及一些不可避免的怀疑论者,工业界和学术界,他们中的许多人最终会被说服。

我们谈到了面向电路的优化、伴随灵敏度、良率驱动设计、非线性电路设计和基于梯度的优化算法,例如 Madsen 的极小极大算法和经得起时间考验的相关公式。我们强调了微波电磁优化的起源和后续发展。

我们非常关注迭代数值优化工具和相应的商业软件产品的十年认可,学术界和工业界的最终认可。我们提供了主要商业优化解决方案和事件的时间表,并指出了 MIMIC 计划的影响。

我们概述了空间映射的背景故事:科学界和工程界对它的反应、一些成功的故事、一些失败的故事,以及它作为“认知驱动设计”的持续重塑。我们提出了空间映射的本质,将空间映射扩展为隐式和调谐空间映射等变体,射频和微波以外的应用,基于测量的空间映射,以及工程师和数学家开会讨论空间的协同时期相对于代理模型的映射。最后,我们谈到了不断扩展的替代方法。

一个简短的部分概述了班德勒所谓的“认知驱动设计”。我们指出了它在空间映射中的根源,命名了简单的插图,并建议将概念与常识联系起来。

我们在论文中指出但未详细说明先进替代技术及其无数应用的现状,也未详细说明我们对未来的愿景。我们相信,这些细节由 Rayas-Sánchez 等人处理。相反,我们提供了一个选定的背景故事和可能的微波和射频优化技术的早期基石。

用 Bandler 的话说:“最终,工程师神秘的‘感觉’很可能会自动化,最终目标是准确预测成功,而不是解释失败。”

回到我们介绍的第一段:“全自动设计和优化无疑是计算机辅助设计的最终目标之一。” 五年多后,它仍然是我们的最终目标之一:我们还有很多工作要做!

参考

本文基本上是完全翻译精选了以下文献,原作者:John W. Bandler。
仅限于知识的传播,详细引用可以参考原文章。
有何指点与建议,可以在文章下面留言。

J. W. Bandler and J. E. Rayas-Sánchez, “An Early History of Optimization Technology for Automated Design of Microwave Circuits,” in IEEE Journal of Microwaves, vol. 3, no. 1, pp. 319-337, Jan. 2023, doi: 10.1109/JMW.2022.3225012.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值