非线性发展方程定解问题

非线性发展方程定解问题

前言

非线性现象的研究是自然科学领域甚至社会科学领域也十分关心的问题. 由于自然界中许多的现象本质上是非线性的, 所以非线性现象引起了工程师、物理 学家、数学家和许多其他领域的科学家的兴趣、关注. 在数学和物理科学里, 非线性现象是指输出的变化量不正比于输入的变化量. 很大一部分非线性现象可以用非线性偏微分方程来描述. 非线性偏微分方程的两个典型例子是流体力学中的 Navier-Stokes 方程、量子力学中的 Schrödinger 方程. 维基百科上列出的非线性偏微分方程有 118 个之多.

非线性问题最大困难之一是一般不能由已知的特解去构造新解. 例如, 线性问题, 由一族线性无关的解可以通过叠加原理构造通解. 一个非常好的例子是带有 Dirichlet 边界条件的热传导方程的解可以表示成不同频率的正弦函数的依赖于时 间系数的线性组合. 叠加原理使得求解线性问题的解变得容易. 对于非线性问题找几个特解常常还是可能的, 但是试图从这几个特解出发寻找通解有很大的难度.

在科学的计算机化进程中, 科学与工程计算作为一门工具性、方法性、边缘交 叉性的新学科开始了自己的新发展. 微分方程数值解法也得到了前所末有的发展.

本文列出了 11 个非线性偏微分方程定解问题及其应用领域. 这 11 个方程依次是 Burgers 方程、正则长波方程、Korteweg-de Vries 方程、Camassa-Holm 方程、 Schrödinger 方程、 Kuramoto-Tsuzuki 方程、 Zakharov 方程、 Ginzburg-Landau 方程、Cahn-Hilliard 方程、外延增长模型方程和相场晶体模型方程.

Burgers方程

Burgers方程是描述许多物理现象的模型方程方程,如流体力学、非线性声学、气体动力学、交通动力学问题. B u r g e r s \mathrm{Burgers} Burgers 方程也可以作为流体力学 N a i v e r − S t o k e s \mathrm{Naiver-Stokes} NaiverStokes 方程的简化模型.近年来,求解 B u r g e r s \mathrm{Burgers} Burgers 方程的数值方法受到科研人员的广泛关注.

考虑一维非线性 B u r g e r s \mathrm{Burgers} Burgers 方程的初边值问题
u t + u u x = ν u x x , 0 < x < L , 0 < t ⩽ T , u ( x , 0 ) = φ ( x ) , 0 < x < L , u ( 0 , t ) = 0 , u ( L , t ) = 0 , 0 ⩽ t ⩽ T , \begin{array}{l} u_{t}+u u_{x}=\nu u_{x x}, \quad 0<x<L, 0<t \leqslant T ,\\ u(x, 0)=\varphi(x), \quad 0<x<L, \\ u(0, t)=0, \quad u(L, t)=0, \quad 0 \leqslant t \leqslant T, \end{array} ut+uux=νuxx,0<x<L,0<tTu(x,0)=φ(x),0<x<Lu(0,t)=0,u(L,t)=0,0tT
其中 ν \nu ν为动力黏性系数, φ ( x ) \varphi(x) φ(x)为给定函数, φ ( 0 ) = φ ( L ) = 0 \varphi(0)=\varphi(L)=0 φ(0)=φ(L)=0.

正则长波方程

正则长波 (Regularized Long Wave) 方程是非线性长波方程的一种表述形式. 在进行非线性扩散波的研究时, 正则长波方程因其能描述大量的物理现象, 如浅水波和离子波而占有重要的地位.

考虑正则长波方程初边值问题
u t − μ u x x t + γ u u x + u x = 0 , 0 < x < L , 0 < t ⩽ T u ( x , 0 ) = φ ( x ) , 0 < x < L , u ( 0 , t ) = 0 , u ( L , t ) = 0 , 0 ⩽ t ⩽ T \begin{array}{l} u_{t}-\mu u_{x x t}+\gamma u u_{x}+u_{x}=0, \quad 0<x<L, \quad 0<t \leqslant T \\ u(x, 0)=\varphi(x), \quad 0<x<L, \\ u(0, t)=0, \quad u(L, t)=0, \quad 0 \leqslant t \leqslant T \end{array} utμuxxt+γuux+ux=0,0<x<L,0<tTu(x,0)=φ(x),0<x<L,u(0,t)=0,u(L,t)=0,0tT
其中 μ , γ \mu, \gamma μ,γ 为正常数, φ ( 0 ) = φ ( L ) = 0 \varphi(0)=\varphi(L)=0 φ(0)=φ(L)=0.

Korteweg-de Vries方程

KdV 浅水波方程是非线性色散方程的典型代表. 因其具有无穷多个守恒律, 在 固体、液体、气体以及等离子体等学科领域中得到了广泛应用. K d V \mathrm{KdV} KdV 方程是 1895 年由荷兰数学家 Diederik Korteweg 和 Gustav de Vries 在研究浅水波中小振幅长波运动时共同发现的一种单向运动浅水波偏微分方程. Boussinesq 于 1877 年首先 引入了 K d V \mathrm{KdV} KdV 方程.

研究 K d V \mathrm{KdV} KdV 方程初边值问题
u t + γ u u x + u x x x = 0 , 0 < x < L , 0 < t ⩽ T u ( x , 0 ) = φ ( x ) , 0 < x < L u ( 0 , t ) = 0 , u ( L , t ) = 0 , u x ( L , t ) = 0 , 0 < t ⩽ T \begin{array}{l} u_{t}+\gamma u u_{x}+u_{x x x}=0, \quad 0<x<L, 0<t \leqslant T \\ u(x, 0)=\varphi(x), \quad 0<x<L \\ u(0, t)=0, \quad u(L, t)=0, \quad u_{x}(L, t)=0, \quad 0<t \leqslant T \end{array} ut+γuux+uxxx=0,0<x<L,0<tTu(x,0)=φ(x),0<x<Lu(0,t)=0,u(L,t)=0,ux(L,t)=0,0<tT
其中 γ \gamma γ 为常数, φ ( 0 ) = φ ( L ) = φ ′ ( L ) = 0 \varphi(0)=\varphi(L)=\varphi^{\prime}(L)=0 φ(0)=φ(L)=φ(L)=0.

Camassa-Holm (C-H)方程

$Camassa-Holm (C-H)方程具有带尖点的孤立波解使它成为浅水波理论研究的 重要对象之一. 许多学者对 C a m a s s a − H o l m \mathrm{Camassa-Holm} CamassaHolm 方程多方面的性质做了深入的研究, 如孤波解、双 Hamiltonian 结构、完全对称性等.

考虑 C a m a s s a − H o l m \mathrm{Camassa-Holm} CamassaHolm 方程初边值问题
u t − u x x t + 3 u u x = 2 u x u x x + u u x x x , 0 < x < L , 0 < t ⩽ T u ( x , 0 ) = φ ( x ) , 0 < x < L u ( 0 , t ) = 0 , u ( L , t ) = 0 , 0 < t ⩽ T \begin{array}{l} u_{t}-u_{x x t}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}, \quad 0<x<L, 0<t \leqslant T \\ u(x, 0)=\varphi(x), \quad 0<x<L \\ u(0, t)=0, \quad u(L, t)=0, \quad 0<t \leqslant T \end{array} utuxxt+3uux=2uxuxx+uuxxx,0<x<L,0<tTu(x,0)=φ(x),0<x<Lu(0,t)=0,u(L,t)=0,0<tT
其中 φ ( 0 ) = φ ( L ) = 0 \varphi(0)=\varphi(L)=0 φ(0)=φ(L)=0.
原方程可以写为
u t − u x x t + 3 u u x = u x u x x + ( u u x x ) x . u_{t}-u_{x x t}+3 u u_{x}=u_{x} u_{x x}+\left(u u_{x x}\right)_{x}. utuxxt+3uux=uxuxx+(uuxx)x.

Schrödinger 方程

Schrödinger方程奠定了近代量子力学的基础, 揭示了微观世界中物质运动的基本规律. S c h r o ¨ d i n g e r \mathrm{Schrödinger} Schro¨dinger 方程在量子力学中的地位如同牛顿三定律之于经典力学、麦克斯韦方程之于电磁学. S c h r o ¨ d i n g e r \mathrm{Schrödinger} Schro¨dinger 方程在等离子物理、非线性光子学、水波及双分子动力学等领域也有重要应用.

考虑如下 S c h r o ¨ d i n g e r \mathrm{Schrödinger} Schro¨dinger 方程初边值问题
i u t + u x x + q ∣ u ∣ 2 u = 0 , 0 < x < L , 0 ⩽ t ⩽ T u ( x , 0 ) = φ ( x ) , 0 ⩽ x ⩽ L u ( 0 , t ) = 0 , u ( L , t ) = 0 , 0 < t ⩽ T \begin{array}{l} \mathrm{i} u_{t}+u_{x x}+q|u|^{2} u=0, \quad 0<x<L, 0 \leqslant t \leqslant T \\ u(x, 0)=\varphi(x), \quad 0 \leqslant x \leqslant L \\ u(0, t)=0, \quad u(L, t)=0, \quad 0<t \leqslant T \end{array} iut+uxx+qu2u=0,0<x<L,0tTu(x,0)=φ(x),0xLu(0,t)=0,u(L,t)=0,0<tT
其中 q q q 为实常数, i = − 1 \mathrm{i}=\sqrt{-1} i=1 为虚数单位, φ ( x ) \varphi(x) φ(x) 为复值函数, φ ( 0 ) = φ ( L ) = 0 , u ( x , t ) \varphi(0)=\varphi(L)=0, u(x, t) φ(0)=φ(L)=0,u(x,t) 为末知复函数.

Kuramoto-Tsuzuki 方程

Kuramoto-Tsuzuki方程描述了在分歧点附近两个分支的行为状况, 它可以看成是 G i n z b u r g − L a n d a u \mathrm{Ginzburg-Landau} GinzburgLandau 方程的一维形式.

研究 K u r a m o t o − T s u z u k i \mathrm{Kuramoto-Tsuzuki} KuramotoTsuzuki 方程初边值问题
u t = ( 1 + i c 1 ) u x x + u − ( 1 + i c 2 ) ∣ u ∣ 2 u , 0 < x < L , 0 < t ⩽ T u ( x , 0 ) = φ ( x ) , 0 ⩽ x ⩽ L u x ( 0 , t ) = 0 , u x ( L , t ) = 0 , 0 < t ⩽ T \begin{array}{l} u_{t}=\left(1+\mathrm{i} c_{1}\right) u_{x x}+u-\left(1+\mathrm{i} c_{2}\right)|u|^{2} u, \quad 0<x<L, 0<t \leqslant T \\ u(x, 0)=\varphi(x), \quad 0 \leqslant x \leqslant L \\ u_{x}(0, t)=0, \quad u_{x}(L, t)=0, \quad 0<t \leqslant T \end{array} ut=(1+ic1)uxx+u(1+ic2)u2u,0<x<L,0<tTu(x,0)=φ(x),0xLux(0,t)=0,ux(L,t)=0,0<tT
其中 c 1 c_{1} c1 c 2 c_{2} c2 为实常数, φ ( x ) , u ( x , t ) \varphi(x), u(x, t) φ(x),u(x,t) 为复值函数, φ x ( 0 ) = φ x ( L ) = \varphi_{x}(0)=\varphi_{x}(L)= φx(0)=φx(L)= 0.

ZakharOv方程

ZakharOv方程由于在超小电子设备、稠密天体物理、等离子系统和激光等离子体中, 量子具有重要的作用. Vladimir Zakharov (1972 年) 最早建立了描述高频 Langmuir 波和低频率离子声波相互作用的非线性耦合波动方程组. 自那以后 Zakharov 系统引起人们的广泛研究.

研究 Z a k h a r o v \mathrm{Zakharov} Zakharov 方程初边值问题
i u t + u x x − u v = 0 , 0 < x < L , 0 < t ⩽ T v t t − v x x − ( ∣ u ∣ 2 ) x x = 0 , 0 < x < L , 0 < t ⩽ T , u ( x , 0 ) = φ ( x ) , v ( x , 0 ) = ψ ( x ) , v t ( x , 0 ) = ψ 1 ( x ) , 0 < x < L u ( 0 , t ) = 0 , u ( L , t ) = 0 , v ( 0 , t ) = 0 , v ( L , t ) = 0 , 0 ⩽ t ⩽ T \begin{array}{l} \mathrm{i} u_{t}+u_{x x}-u v=0, \quad 0<x<L, \quad 0<t \leqslant T \\ v_{t t}-v_{x x}-\left(|u|^{2}\right)_{x x}=0, \quad 0<x<L, \quad 0<t \leqslant T, \\ u(x, 0)=\varphi(x), \quad v(x, 0)=\psi(x), \quad v_{t}(x, 0)=\psi_{1}(x), \quad 0<x<L \\ u(0, t)=0, \quad u(L, t)=0, \quad v(0, t)=0, \quad v(L, t)=0, \quad 0 \leqslant t \leqslant T \end{array} iut+uxxuv=0,0<x<L,0<tTvttvxx(u2)xx=0,0<x<L,0<tT,u(x,0)=φ(x),v(x,0)=ψ(x),vt(x,0)=ψ1(x),0<x<Lu(0,t)=0,u(L,t)=0,v(0,t)=0,v(L,t)=0,0tT
其中 φ ( 0 ) = φ ( L ) = ψ ( 0 ) = ψ ( L ) = ψ 1 ( 0 ) = ψ 1 ( L ) = 0 , u ( x , t ) \varphi(0)=\varphi(L)=\psi(0)=\psi(L)=\psi_{1}(0)=\psi_{1}(L)=0, u(x, t) φ(0)=φ(L)=ψ(0)=ψ(L)=ψ1(0)=ψ1(L)=0,u(x,t) φ ( x ) \varphi(x) φ(x) 为复值函数, v ( x , t ) , ψ ( x ) , ψ 1 ( x ) v(x, t), \psi(x), \psi_{1}(x) v(x,t),ψ(x),ψ1(x) 为实值函数.

Ginzburg-Landau 方程

Ginzburg-Landau方程是由物理学家 Ginzburg 和 Landau 在 20 世纪 50 年代作为低温超导模型提出的. 这个模型于 2003 年获 Nobel 物理学奖. 该模型在非平衡流体动力学系统和物理相变过程等领域也有广泛的应用.

考虑二维 G i n z b u r g − L a n d a u \mathrm{Ginzburg-Landau} GinzburgLandau 方程初边值问题
u t − ( ν + i α ) Δ u + ( κ + i β ) ∣ u ∣ 2 u − γ u = 0 , ( x , y ) ∈ Ω , 0 < t ⩽ T u ( x , y , t ) = 0 , ( x , y ) ∈ ∂ Ω , 0 < t ⩽ T u ( x , y , 0 ) = φ ( x , y ) , ( x , y ) ∈ Ω ˉ \begin{array}{l} u_{t}-(\nu+\mathrm{i} \alpha) \Delta u+(\kappa+\mathrm{i} \beta)|u|^{2} u-\gamma u=0, \quad(x, y) \in \Omega, \quad 0<t \leqslant T \\ u(x, y, t)=0, \quad(x, y) \in \partial \Omega, \quad 0<t \leqslant T \\ u(x, y, 0)=\varphi(x, y), \quad(x, y) \in \bar{\Omega} \end{array} ut(ν+iα)Δu+(κ+iβ)u2uγu=0,(x,y)Ω,0<tTu(x,y,t)=0,(x,y)Ω,0<tTu(x,y,0)=φ(x,y),(x,y)Ωˉ
其中 Ω = ( 0 , L 1 ) × ( 0 , L 2 ) , ∂ Ω \Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right), \partial \Omega Ω=(0,L1)×(0,L2),Ω Ω \Omega Ω 的边界, Δ \Delta Δ 为 Laplace 算子 , ν > 0 , κ > 0 , α , β , γ , \nu>0, \kappa>0, \alpha, \beta, \gamma ,ν>0,κ>0,α,β,γ 为给定的实常数. 当 x ∈ ∂ Ω x \in \partial \Omega xΩ φ ( x , y ) = 0 \varphi(x, y)=0 φ(x,y)=0.

Cahn-Hilliard 方程

Cahn-Hilliard方程是一类典型的四阶非线性扩散方程. 它最初是由 Cahn 和 Hilliard 于 1958 年在研究热力学中两相物质 (如合金、聚合物等) 之间的相互扩散 现象时提出来的. 后来, 在描述生物种群的竞争与排斥现象、河床的迁移过程、固体表面上微滴的扩散等许多扩散现象的研究中也提出了同样的数学模型.

考虑如下 C a h n − H i l l i a r d \mathrm{Cahn-Hilliard} CahnHilliard 方程的初边值问题
u t = Δ ( ϕ ( u ) − α Δ u ) , ( x , y ) ∈ Ω , 0 < t ⩽ T ∂ u ∂ ν = 0 , ∂ ( ϕ ( u ) − α Δ u ) ∂ ν = 0 , 0 < t ⩽ T u ( x , y , 0 ) = φ ( x , y ) , ( x , y ) ∈ Ω ˉ \begin{array}{l} u_{t}=\Delta(\phi(u)-\alpha \Delta u), \quad(x, y) \in \Omega, \quad 0<t \leqslant T \\ \frac{\partial u}{\partial \nu}=0, \quad \frac{\partial(\phi(u)-\alpha \Delta u)}{\partial \nu}=0, \quad 0<t \leqslant T \\ u(x, y, 0)=\varphi(x, y), \quad(x, y) \in \bar{\Omega} \end{array} ut=Δ(ϕ(u)αΔu),(x,y)Ω,0<tTνu=0,ν(ϕ(u)αΔu)=0,0<tTu(x,y,0)=φ(x,y),(x,y)Ωˉ
其中 Ω = ( 0 , L 1 ) × ( 0 , L 2 ) , ν \Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right), \nu Ω=(0,L1)×(0,L2),ν 为边界 Ω \Omega Ω 的单位外法向矢量, ϕ ( u ) = ψ ′ ( u ) , ψ ( u ) = \phi(u)=\psi^{\prime}(u), \psi(u)= ϕ(u)=ψ(u),ψ(u)= γ ( u 2 − β 2 ) 2 / 4 , α , β , γ \gamma\left(u^{2}-\beta^{2}\right)^{2} / 4, \alpha, \beta, \gamma γ(u2β2)2/4,α,β,γ 为正常数.

外延增长模型方程

外延增长模型方程考虑二维外延增长模型问题
u t + δ Δ 2 u − ∇ ⋅ ( ∣ ∇ u ∣ 2 ∇ u ) + Δ u = 0 , ( x , y ) ∈ R 2 , 0 < t ⩽ T u ( x , y , 0 ) = φ ( x , y ) , ( x , y ) ∈ R 2 \begin{array}{l} u_{t}+\delta \Delta^{2} u-\nabla \cdot\left(|\nabla u|^{2} \nabla u\right)+\Delta u=0, \quad(x, y) \in \mathcal{R}^{2}, 0<t \leqslant T \\ u(x, y, 0)=\varphi(x, y), \quad(x, y) \in \mathcal{R}^{2} \end{array} ut+δΔ2u(u2u)+Δu=0,(x,y)R2,0<tTu(x,y,0)=φ(x,y),(x,y)R2
其中 δ \delta δ 是一个正常数, ∇ \nabla 为梯度算子, Δ \Delta Δ 为 Laplace 算子, u ( x , y , t ) u(x, y, t) u(x,y,t) 关 于 ( x , y ) (x, y) (x,y) R 2 R^{2} R2 上关于盒子 Ω = ( 0 , L 1 ) × ( 0 , L 2 ) \Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right) Ω=(0,L1)×(0,L2) 是周期的.

相场晶体模型方程

相场晶体模型方程考虑二维相场晶体模型问题
ϕ t = ∇ ⋅ ( M ( ϕ ) ∇ μ ) , ( x , y ) ∈ R 2 , 0 < t ⩽ T μ = Δ 2 ϕ + 2 Δ ϕ + ϕ 3 + ( 1 − γ ) ϕ , ( x , y ) ∈ R 2 , 0 < t ⩽ T ϕ ( x , y , 0 ) = ψ ( x , y ) , ( x , y ) ∈ R 2 \begin{array}{l} \phi_{t}=\nabla \cdot(M(\phi) \nabla \mu), \quad(x, y) \in \mathcal{R}^{2}, 0<t \leqslant T \\ \mu=\Delta^{2} \phi+2 \Delta \phi+\phi^{3}+(1-\gamma) \phi, \quad(x, y) \in \mathcal{R}^{2}, 0<t \leqslant T \\ \phi(x, y, 0)=\psi(x, y), \quad(x, y) \in \mathcal{R}^{2} \end{array} ϕt=(M(ϕ)μ),(x,y)R2,0<tTμ=Δ2ϕ+2Δϕ+ϕ3+(1γ)ϕ,(x,y)R2,0<tTϕ(x,y,0)=ψ(x,y),(x,y)R2
其中 γ \gamma γ 是一个小于 1 的正常数, ∇ \nabla 为梯度算子, Δ \Delta Δ 为 Laplace 算子, μ \mu μ 是化学势, M ( ϕ ) M(\phi) M(ϕ) 为迁移率, ϕ \phi ϕ R 2 R^{2} R2 上关于盒子 Ω = ( 0 , L 1 ) × ( 0 , L 2 ) \Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right) Ω=(0,L1)×(0,L2) 是周期的.

《非线性发展方程的有限差分方法》 孙志忠著 -北京:科学出版社 2018.8

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.图灵的猫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值