
前言
Xinference 在 Linux, Windows, MacOS 上都可以通过 pip 来安装。如果需要使用 Xinference 进行模型推理,可以根据不同的模型指定不同的引擎。
环境准备及安装
- Phthon环境,版本越高越好
安装
如果你希望能够推理所有支持的模型,可以用以下命令安装所有需要的依赖:
pip install "xinference[all]"
Transformers 引擎
PyTorch(transformers) 引擎支持几乎有所的最新模型,这是 Pytorch 模型默认使用的引擎:
pip install "xinference[transformers]"
vLLM 引擎
vLLM 是一个支持高并发的高性能大模型推理引擎。当满足以下条件时,Xinference 会自动选择 vllm 作为引擎来达到更高的吞吐量:
pip install "xinference[vllm]"
- 模型格式为 pytorch , gptq 或者 awq 。
- 当模型格式为 pytorch 时,量化选项需为 none 。
- 当模型格式为 awq 时,量化选项需为 Int4 。
- 当模型格式为 gptq 时,量化选项需为 Int3 、 Int4 或者 Int8 。
- 操作系统为 Linux 并且至少有一个支持 CUDA 的设备
- 自定义模型的 model_family 字段和内置模型的 model_name 字段在 vLLM 的支持列表中。
Llama.cpp 引擎
Xinference 通过 llama-cpp-python 支持 gguf 和 ggml 格式的模型。建议根据当前使用的硬件手动安装依赖,从而获得最佳的加速效果。
pip install xinference
- 不同硬件的安装方式
不同版本的python自己修改
pip
或pip3
Apple M系列
CMAKE_ARGS="-DLLAMA_METAL=on" pip3 install llama-cpp-python
英伟达显卡:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip3 install llama-cpp-python
AMD 显卡:
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip3 install llama-cpp-python
SGLang 引擎
SGLang 具有基于 RadixAttention 的高性能推理运行时。它通过在多个调用之间自动重用KV缓存,显著加速了复杂 LLM 程序的执行。它还支持其他常见推理技术,如连续批处理和张量并行处理。
pip install 'xinference[sglang]'
MLX Backend
MLX-lm 用来在苹果 silicon 芯片上提供高效的 LLM 推理。
pip install 'xinference[mlx]'
启动
xinference-local --host 0.0.0.0 --port 9997
默认情况下,Xinference 会使用 /.xinference 作为主目录来存储一些必要的信息,比如日志文件和模型文件,其中 就是当前用户的主目录。
你可以通过配置环境变量 XINFERENCE_HOME 修改主目录, 比如:
XINFERENCE_HOME=/tmp/xinference xinference-local --host 0.0.0.0 --port 9997
可以通过访问 http://127.0.0.1:9997/ui
来使用 UI,访问 http://127.0.0.1:9997/docs
来查看 API 文档。
😁 作者:Teddy (公众号:码尚云软件)
ok!到这里就大功告成,小编(Teddy)在这里先感谢大家的到来。
虽然不是太详细,小编已经很努力,给小编来个一键三连(点赞,关注,收藏),小编会越来越努力。。。