1.1.1 什么是神经网络
- 人工神经网络技术的出现,才让机器出现了“真智能”
- 人工神经网络内部的分析过程不可见
- 人工神经网络受人类大脑结构启发创造而来,由神经元和神经突触的复杂结构构成
- 人工神经网络结构越复杂,便越强大
- 训练深度神经网络的过程叫做深度学习
- 人工神经网络,在神经元接收突触信号前,经过权重数处理
1.1.2 如何将数据输入神经网络
- 一张图片信息,由三张分别表示RGB的矩阵组成
- 在人工神经网络中,每一个输入到神经网络的数据都被叫做一个特征。
- 通常输入到神经网络中的特征,要装换成特征向量输入。
1.1.3 神经网络是如何进行预测的
- 预测模型(逻辑回归):z = dot ( w, x ) + b
- w ------ 权重
- x -------- 特征
- dot( ) ------- 向量乘法
- b ------ 阈值
-z --------- 预测结果
等同于:z = ( w1 * x1 + w2 * x2 + … + wn * xn ) + b
在人工神经网络中,我们不能直接使用预测模型,需要在外面套上一个激活函数
激活函数有很多种类,他的作用是将预测的结果映射到0~1的区间,用于我们解读预测的概率到底是多少