前言:
直方图均衡化是灰度变换的一个重要应用,高效且易于实现。它通过改变图像的直方图来改变图像中各像素的灰度,主要用于增强动态范围偏小的图像的对比度。如果一幅图像整体偏暗或者偏亮,那么直方图均衡化的方法很适用。
一、OpenCV中直方图均衡化函数
调用自带的函数:cv2.equalizeHist
OpenCV中直方图均衡化算法的输入图像需为八位单通道图像,也就是灰度图像。若想要处计算彩色图像的均衡化图,可以先将图像用split函数进行通道分离,分别处理每一个通道的图像,在用merge函数进行合并。
import cv2
import numpy as np
img = cv2.imread('img.jpg', 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dat = cv2.equalizeHist(gray)
cv2.imshow('gray', gray)a
cv2.imshow('dat', dat)
cv2.waitKey(0)
二、算法步骤
- 确定图像的灰度级;
- 计算原始直方图分布概率p(i);
- 计算直方图概率累计值s(i);
- 灰度映射;
三、python代码:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('img.jpg', 1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
count = np.zeros(256, np.float)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
count[int(gray[i, j])] += 1 # 统计该像素出现的次数
count = count / (img.shape[0] * img.shape[1]) # 得到概率
x = np.linspace(0,255,256)
plt.bar(x, count,color = 'b')
plt.show()
# 计算累计概率
for i in range(1,256):
count[i] += count[i - 1]
# 映射
map1 = count * 255
for i in range(img.shape[0]):
for j in range(img.shape[1]):
p = gray[i, j]
gray[i, j] = map1[p]
cv2.imshow('gray', gray)
cv2.waitKey(0)
四、C++代码:
#include <opencv2\opencv.hpp>
#include <iostream>
using namespace cv;
int main()
{
Mat srcImg,grayImg;//声明原始图和灰度度
srcImg = imread("1.jpg");//载入原始图
if(!srcImg.data)
{
std::cout<<"请确认路径下存在图片";
return -1;
}
imshow("原始图",srcImg);//显示原始图
cvtColor(srcImg,grayImg,CV_RGB2GRAY);//将rgb图像转化为灰度图
int rowNumber = grayImg.rows;//得到行
int colNumber = grayImg.cols;//得到列
int sumNumber = rowNumber*colNumber;//得到图像整个像素个数
Mat dstImg(rowNumber,colNumber,CV_8UC1,Scalar(0,0,0));//初始化直方图均衡化后的图
double hist[256] = {0.00};//直方图
double dhist[256] = {0.00};//直方图归一化图
double Dhist[256] = {0.00};//直方图积分图,每一个像素点
for(int i = 0;i<rowNumber;i++)//遍历原始图像,得到直方图
{
uchar* data = grayImg.ptr<uchar>(i);
for(int j = 0;j<colNumber;j++)
{
int temp = data[j];//得到图像像素值
hist[temp] = hist[temp]+1;//将相应像素值在直方图中加1
}
}
for(int i = 0;i<256;i++)//遍历直方图,得到归一化直方图和积分图
{
dhist[i] = hist[i]/sumNumber;//得到归一化图
for(int j = 0;j<=i;j++)
{
Dhist[i] = Dhist[i] + dhist[j]; //得到积分图
}
}
for(int i = 0;i<rowNumber;i++)//以积分图为查找表得到均衡化后的图
{
uchar* data1 = dstImg.ptr<uchar>(i);
uchar* data2 = grayImg.ptr<uchar>(i);
for(int j = 0;j<colNumber;j++)
{
int temp1 = data2[j]; //查找到原始图相应位置的像素值
int temp2 = (int)(Dhist[temp1]*255); //在积分图中找到相应像素值的映射值
data1[j] = temp2;//将映射值赋值给目标图像相应值
}
}
imshow("均衡化后的图",dstImg);
waitKey(0);
return 0;
}