多视图几何(4)_算法评价和误差分析

算法评价和误差分析

性能的上下界

单图像误差

ε r e s = ( 1 2 n ∑ i = 1 n d ( x i ′ , x ^ i ′ ) 2 ) 1 / 2 \varepsilon_{res} = (\frac1{2n} \sum_{i=1}^n d(x_i^\prime,\hat{x}_i^\prime)^2)^{1/2} εres=(2n1i=1nd(xi,x^i)2)1/2

双图像误差

ε r e s = 1 4 n ( ∑ i = 1 n d ( x i , x ^ i ) 2 + ∑ i = 1 n d ( x i , x ^ i ′ ) 2 ) 1 / 2 \varepsilon_{res} = \frac1{\sqrt{4n}}(\sum_{i=1}^n d(x_i,\hat{x}_i)^2 +\sum_{i=1}^n d(x_i,\hat{x}_i^\prime)^2 )^{1/2} εres=4n 1(i=1nd(xi,x^i)2+i=1nd(xi,x^i)2)1/2

最优估计算法MLE

几何误差的最小化等于MLE,因此任何实现几何误差最小化的算法的目标应该是达到MLE给出的理论界。最小化不同代价函数的其它算法可以根据它与MLE所给出的界的接近程度做性能判断。

一般的估计问题关系到一个由 I R M IR^M IRM I R N IR^N IRN的函数 f f f,其中 I R M IR^M IRM是参数空间, I R N IR^N IRN是测量空间。现在考虑一个点 X ‾ ∈ I R N \overline X\in IR^N XIRN,且存在一个参数向量 P ‾ ∈ I R M \overline P \in IR^M PIRM使得 f ( P ‾ ) = X ‾ f(\overline P) = \overline X f(P)=X

X X X是根据各向同性高斯分布选取的测量向量,其均值为测量真值 X ‾ \overline X X而方差为 N σ 2 N\sigma^2 Nσ2(表示 N N N个分量都有方差 σ 2 \sigma^2 σ2)。当参数向量 P P P的值在 P ‾ \overline P P的领域变换时,函数 f ( P ) f(P) f(P)的值形成 I R N IR^N IRN中过点 X ‾ \overline X X的曲面 S M S_M SM

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

给定测量向量 X X X,最大似然估计 X ^ \hat X X^ S M S_M SM上的最接近 X X X的点。ML估计算法就是返回该曲面上离 X X X最近的点的算法。假定在 X ‾ \overline X X的领域曲面基本上是平面,即切平面可作为他的一个很好的近似,估计 X ^ \hat X X^是到 X X X切平面上的垂足。残差是点 X X X到估计值 X ^ \hat X X^的距离, X ^ \hat X X^ X ‾ \overline X X的距离是最佳估计值到真值的距离。

5.2
  • I R N IR^N IRN上总方差为 N σ 2 N\sigma^2 Nσ2的各向同性高斯分布向一个 s s s维子空间的投影是总方差为 s σ 2 s\sigma^2 sσ2的各向同性高斯分布
  • 考虑一个估计问题,其中 N N N个测量由依赖于 d d d个本质参数集的函数模型化。假定每个测量变量有标准差 σ 2 \sigma^2 σ2的独立高斯噪声
    • M L ML ML估计算法的 R M S RMS RMS残差(测量值到估计值的距离)是
      ε r e s = E [ ∥ X ^ − X ∥ 2 / N ] 1 / 2 = σ ( 1 − d / N ) 1 / 2 \varepsilon_{res} = E[\parallel \hat X -X \parallel^2/N]^{1/2} = \sigma(1-d/N)^{1/2} εres=E[X^X2/N]1/2=σ(1d/N)1/2

    • ML估计算法的 R M S RMS RMS估计误差(估计值到真值的距离)是
      ε e s t = E [ ∥ X ^ − X ∥ 2 / N ] 1 / 2 = σ ( d / N ) 1 / 2 \varepsilon_{est} = E[\parallel \hat X - X \parallel ^2/N]^{1/2} = \sigma(d/N)^{1/2} εest=E[X^X2/N]1/2=σ(d/N)1/2

确定一个算法的正确收敛性

根据MLE的模型,有
∥ X − X ‾ ∥ 2 = ∥ X − X ^ ∥ 2 + ∥ X ‾ − X ^ ∥ 2 \parallel X - \overline X \parallel ^2 = \parallel X - \hat X \parallel ^2 + \parallel \overline X - \hat X \parallel ^2 XX2=∥XX^2+XX^2
在评估采用合成数据的一个算法时,此等式给出一个简单的测试,查看该算法是否已收敛到最优值。如果 X ^ \hat X X^停滞到局部最优解,等式右边大于左边。

估计变换的协方差

比起残差或估计误差,变换本身的准确度如何更值得关心,这是由协方差表示的

协方差的前向传播

  • 仿射
    v v v I R M IR^M IRM中的一个具有均值 v ‾ \overline v v和协方差矩阵 Σ \Sigma Σ的随机向量,假定 f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN是一个仿射映射:定义为 f ( v ) = f ( v ‾ ) + A ( v − v ‾ ) f(v) = f(\overline v) + A(v- \overline v) f(v)=f(v)+A(vv)。那么 f ( v ) f(v) f(v)是一个具有均值 f ( v ‾ ) f(\overline v) f(v)和协方差矩阵 A Σ A T A\Sigma A^T AΣAT的随机变量。
  • 非线性
    v v v I R M IR^M IRM中一个具有均值 v ‾ \overline v v和协方差矩阵 Σ \Sigma Σ的随机向量,令 f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN v ‾ \overline v v的领域可微。那么在精确到一阶近似的程度下, f ( v ) f(v) f(v)是一个具有均值 f ( v ‾ ) f(\overline v) f(v)和协方差矩阵 J Σ J T J\Sigma J^T JΣJT的随机变量,其中 J J J f f f的雅克比矩阵在 v ‾ \overline v v的值

协方差的反向传播

  • 仿射情形
    f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN是形为 f ( P ) = f ( P ‾ ) + J ( P − P ‾ ) f(P) = f(\overline P)+ J(P-\overline P) f(P)=f(P)+J(PP)的仿射映射,其中 J J J的秩等于 M M M。令 X X X I R N IR^N IRN中一个具有均值 X ‾ = f ( P ‾ ) \overline X = f(\overline P) X=f(P)和协方差矩阵 Σ \Sigma Σ的随机变量。令 f − 1 ∘ η : I R N → I R M f^{-1} \circ \eta: IR^N \rightarrow IR^M f1η:IRNIRM是一个映射,它把测量向量 X X X映射到对应于 M L ML ML估计 X ^ \hat X X^的参数集合。那么 P ^ = f − 1 ∘ η ( X ) \hat P = f^{-1} \circ \eta(X) P^=f1η(X)是一个具有均值 P ‾ \overline P P和协方差矩阵 ( J T Σ X − 1 J ) − 1 (J^T \Sigma_X^{-1} J)^{-1} (JTΣX1J)1的随机变量
  • 非线性情形
    f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN是一个可微映射,而 J J J是它在点 P ‾ \overline P P处的雅克比矩阵。假定 J J J的秩为 M M M。则 f f f P ‾ \overline P P的领域是一一对应的。令 X X X I R N IR^N IRN中一个具有均值 X ‾ = f ( P ‾ ) \overline X = f(\overline P) X=f(P)和协方差矩阵 Σ X \Sigma_X ΣX的随机变量。令映射 f − 1 ∘ η : I R N → I R M f^{-1} \circ \eta: IR^N \rightarrow IR^M f1η:IRNIRM是一个映射,把测量向量 X X X映射到对应于 M L ML ML估计 X ^ \hat X X^的参数集合。那么在一阶精度下, P ^ = f − 1 ∘ η ( X ) \hat P = f^{-1} \circ \eta(X) P^=f1η(X)是一个具有均值 P ‾ \overline P P和协方差矩阵 ( J T Σ X J ) − 1 (J^T\Sigma_XJ)^{-1} (JTΣXJ)1的随机变量

超参数化

把协方差反向传播推广到冗余数据集超参数化的情形

  • f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN是一个可微映射,它将一组参数 P ‾ \overline P P映射到测量向量 X X X。令 S P S_P SP是嵌入 I R M IR^M IRM中的过点 P ‾ \overline P P d d d维光滑流形并使得映射 f f f在流形 S P S_P SP P ‾ \overline P P的一个领域内是一一对应的, f f f P ‾ \overline P P局域地映射到 I R N IR^N IRN上的流形 f ( S P ) f(S_P) f(SP)。函数 f f f有一个局部逆函数,记为 f − 1 f^{-1} f1,它限制在曲面 f ( S P ) f(S_P) f(SP)上的一个领域内。定义 I R N IR^N IRN上的一个具有均值 X ‾ \overline X X和协方差 Σ X \Sigma_X ΣX的高斯分布,并令 η : I R N → f ( S P ) \eta:IR^N \rightarrow f(S_P) η:IRNf(SP) I R N IR^N IRN上的点映射到 f ( S P ) f(S_P) f(SP)上并在 M a h a l a n o b i s Mahalanobis Mahalanobis范数 ∥ ⋅ ∥ Σ X \parallel \cdot \parallel _{\Sigma_X} ΣX意义下最近的点。 I R N IR^N IRN上具有协方差矩阵 Σ X \Sigma_X ΣX的概率分布通过 f − 1 ∘ η f^{-1} \circ \eta f1η诱导 I R M IR^M IRM上的概率分布,它在一阶精度下的协方差矩阵是
    Σ P = ( J T Σ X − 1 J ) + A = A ( A T J T Σ X − 1 J A ) − 1 A T \Sigma_P = (J^T\Sigma_X ^{-1} J)^{+A} = A(A^TJ^T\Sigma^{-1}_X JA)^{-1} A^T ΣP=(JTΣX1J)+A=A(ATJTΣX1JA)1AT
    其中, A A A的列向量生成 S P S_P SP的过点 P ‾ \overline P P的且空间

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 令可微映射 f : I R M → I R N f:IR^M \rightarrow IR^N f:IRMIRN P ‾ \overline P P映射到 X ‾ \overline X X,并令 J J J f f f的雅克比矩阵。设 I R N IR^N IRN上一个具有协方差矩阵 Σ X \Sigma_X ΣX的高斯分布定义在 X ‾ \overline X X,令 f − 1 ∘ η : I R M → I R N f^{-1} \circ \eta :IR^M \rightarrow IR^N f1η:IRMIRN是把一个测量 X X X映射到约束在局部正交于 J J J的零空间的曲面 S P S_P SP上的MLE参数向量 P P P的映射,那么 f − 1 ∘ η f^{-1} \circ \eta f1η诱导在 I R M IR^M IRM上的一个分布,他的协方差矩阵在一阶精度下等于
    Σ P = ( J T Σ X − 1 J ) + \Sigma_P = (J^T \Sigma_X^{-1} J )^+ ΣP=(JTΣX1J)+
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值