考研高等数学公式总结(二)

想要原版的可以购买我的资源,CSDN有些公式无法显示,且有篇幅限制,PDF资源或下载到本地可完美显示

不定积分公式


∫ x k d x = 1 k + 1 x k + 1 + C , k ≠ − 1 \int x^kdx = \cfrac {1}{k+1}x^{k+1}+C,k \neq -1 xkdx=k+11xk+1+C,k=1

∫ 1 x 2 d x = − 1 x + C \int \cfrac1{x^2}dx=-\cfrac1x+C x21dx=x1+C

∫ 1 x d x = 2 x + C \int \cfrac1{\sqrt x}dx=2\sqrt x+C x 1dx=2x +C


∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \cfrac{1}{x}dx = \ln \mid x\mid +C x1dx=lnx+C


∫ e x d x = e x + C \int e^xdx = e^x+C exdx=ex+C

∫ a x d x = a x ln ⁡ a + C , a > 0 & a ≠ 1 \int a^xdx = \cfrac{a^x}{\ln a}+C,a>0\&a\neq1 axdx=lnaax+C,a>0&a=1


∫ sin ⁡   x d x = − cos ⁡   x + C \int \sin \ x dx = -\cos \ x + C sin xdx=cos x+C

∫ cos ⁡   x d x = sin ⁡   x + C \int \cos \ x dx = \sin \ x + C cos xdx=sin x+C

∫ tan ⁡   x d x = − ln ⁡ ∣ cos ⁡   x ∣ + C \int \tan \ x dx = -\ln\mid \cos \ x\mid + C tan xdx=lncos x+C

∫ cot ⁡   x d x = ln ⁡ ∣ sin ⁡   x ∣ + C \int \cot \ x dx = \ln \mid \sin \ x\mid + C cot xdx=lnsin x+C

∫ 1 cos ⁡   x d x = ∫ sec ⁡   x d x = l n ∣ sec ⁡   x + tan ⁡   x ∣ + C \int \cfrac{1}{\cos \ x} dx = \int \sec \ x dx = ln \mid \sec \ x + \tan \ x\mid + C cos x1dx=sec xdx=lnsec x+tan x+C

∫ 1 sin ⁡   x d x = ∫ csc ⁡   x d x = l n ∣ csc ⁡   x − cot ⁡   x ∣ + C \int \cfrac{1}{\sin \ x} dx = \int \csc \ x dx = ln \mid \csc \ x - \cot \ x\mid + C sin x1dx=csc xdx=lncsc xcot x+C

∫ sec ⁡ 2   x d x = tan ⁡   x + C \int \sec^2 \ x dx = \tan \ x + C sec2 xdx=tan x+C

∫ csc ⁡ 2   x d x = − cot ⁡   x + C \int \csc^2 \ x dx = -\cot \ x + C csc2 xdx=cot x+C

∫ sec ⁡   x tan ⁡   x d x = sec ⁡   x + C \int \sec \ x \tan \ x dx = \sec \ x + C sec xtan xdx=sec x+C

∫ csc ⁡   x cot ⁡   x d x = − csc ⁡   x + C \int \csc \ x \cot \ x dx = -\csc \ x + C csc xcot xdx=csc x+C


∫ 1 1 + x 2 d x = a r c tan ⁡   x + C \int \cfrac {1}{1+x^2} dx = arc\tan \ x + C 1+x21dx=arctan x+C

∫ 1 a 2 + x 2 d x = 1 a a r c tan ⁡ x a + C \int \cfrac {1}{a^2+x^2} dx = \cfrac{1}{a}arc\tan \cfrac{x}{a} + C a2+x21dx=a1arctanax+C


∫ 1 1 − x 2 d x = a r c sin ⁡   x + C \int \cfrac {1}{\sqrt{1-x^2}} dx = arc\sin \ x + C 1x2 1dx=arcsin x+C

∫ 1 a 2 − x 2 d x = a r c sin ⁡ x a + C \int \cfrac {1}{\sqrt{a^2-x^2}} dx = arc\sin \cfrac{x}{a} + C a2x2 1dx=arcsinax+C


∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C ( 常 见 a = 1 ) \int \cfrac {1}{\sqrt{x^2+a^2}} dx = \ln (x+\sqrt{x^2+a^2}) + C(常见a=1) x2+a2 1dx=ln(x+x2+a2 )+C(a=1)

∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \cfrac {1}{\sqrt{x^2-a^2}} dx = \ln \mid x+\sqrt{x^2-a^2}\mid + C x2a2 1dx=lnx+x2a2 +C


∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \cfrac {1}{x^2-a^2} dx = \cfrac{1}{2a} \ln \mid \cfrac{x-a}{x+a}\mid + C x2a21dx=2a1lnx+axa+C

∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \int \cfrac {1}{a^2-x^2} dx = \cfrac{1}{2a} \ln \mid \cfrac{x+a}{x-a}\mid + C a2x21dx=2a1lnxax+a+C


∫ a 2 − x 2 d x = a 2 2 a r c sin ⁡ x a + x 2 a 2 − x 2 + C \int \sqrt{a^2-x^2} dx = \cfrac{a^2}{2}arc\sin \cfrac{x}{a}+\cfrac{x}{2} \sqrt{a^2-x^2} + C a2x2 dx=2a2arcsinax+2xa2x2 +C


∫ sin ⁡ 2   x d x = x 2 − sin ⁡   2 x 4 + C \int \sin^2 \ x dx = \cfrac x2 - \cfrac{\sin \ 2x}{4} + C sin2 xdx=2x4sin 2x+C

∫ cos ⁡ 2   x d x = x 2 + sin ⁡   2 x 4 + C \int \cos^2 \ x dx = \cfrac x2 + \cfrac{\sin \ 2x}{4} + C cos2 xdx=2x+4sin 2x+C

∫ tan ⁡ 2   x d x = tan ⁡   x − x + C \int \tan^2 \ x dx = \tan \ x - x + C tan2 xdx=tan xx+C

∫ cot ⁡ 2   x d x = − cot ⁡   x − x + C \int \cot^2 \ x dx = -\cot \ x - x + C cot2 xdx=cot xx+C

定积分公式

区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x ∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \begin{aligned} & \int_a^bf(x)dx=\int_a^bf(a+b-x)dx\\ &\int_a^bf(x)dx=\cfrac12\int_a^b[f(x)+f(a+b-x)]dx\\ &\int_a^bf(x)dx=\int_a^{\cfrac{a+b}{2}}[f(x)+f(a+b-x)]dx \end{aligned} abf(x)dx=abf(a+bx)dxabf(x)dx=21ab[f(x)+f(a+bx)]dxabf(x)dx=a2a+b[f(x)+f(a+bx)]dx

点火公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅   . . .   ⋅ 2 3 ⋅ 1 n 奇 数 n − 1 n ⋅ n − 3 n − 2 ⋅   . . .   ⋅ 1 2 ⋅ π 2 n 偶 数 ∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x ∫ 0 π cos ⁡ n x d x = { 0 n 奇 数 2 ∫ 0 π 2 cos ⁡ n x d x n 偶 数 ∫ 0 2 π sin ⁡ n x d x = ∫ 0 2 π cos ⁡ n x d x = { 0 奇 数 4 ∫ 0 π 2 cos ⁡ n x d x 偶 数 \begin{aligned} &\int_0^{\cfrac\pi2}\sin^nxdx=\int_0^{\cfrac\pi2}\cos^nxdx =\begin{cases} \cfrac{n-1}{n} \cdot \cfrac{n-3}{n-2} \cdot \ ... \ \cdot\cfrac23 \cdot 1 & n奇数\\ \cfrac{n-1}{n} \cdot \cfrac{n-3}{n-2} \cdot \ ... \ \cdot\cfrac12 \cdot \cfrac\pi2 & n偶数\\ \end{cases}\\ &\int_0^{\pi}\sin^nxdx=2\int_0^{\cfrac\pi2}\sin^nxdx\\ &\int_0^{\pi}\cos^nxdx =\begin{cases} 0 & n奇数\\ 2\int_0^{\cfrac\pi2}\cos^nxdx & n偶数\\ \end{cases}\\ &\int_0^{2\pi}\sin^nxdx=\int_0^{2\pi}\cos^nxdx =\begin{cases} 0 & 奇数\\ 4\int_0^{\cfrac\pi2}\cos^nxdx & 偶数\\ \end{cases}\\ \end{aligned} 02πsinnxdx=02πcosnxdx=nn1n2n3 ... 321nn1n2n3 ... 212πnn0πsinnxdx=202πsinnxdx0πcosnxdx=0202πcosnxdxnn02πsinnxdx=02πcosnxdx=0402πcosnxdx

常用三角函数的积分等式

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x ∫ 0 π x f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x ∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \begin{aligned} & \int_0^\pi xf(\sin x)dx=\cfrac\pi2\int_0^\pi f(\sin x)dx\\ & \int_0^\pi xf(\sin x)dx=\pi\int_0^{\cfrac\pi2} f(\sin x)dx\\ & \int_0^{\cfrac\pi2} f(\sin x)dx=\int_0^{\cfrac\pi2} f(\cos x)dx\\ & \int_0^{\cfrac\pi2} f(\sin x,\cos x)dx=\int_0^{\cfrac\pi2} f(\cos x,\sin x)dx\\ \end{aligned} 0πxf(sinx)dx=2π0πf(sinx)dx0πxf(sinx)dx=π02πf(sinx)dx02πf(sinx)dx=02πf(cosx)dx02πf(sinx,cosx)dx=02πf(cosx,sinx)dx

区间简化公式

∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x ( a > 0 ) \int_{-a}^af(x)dx=\int_0^a[f(x)+f(-x)]dx(a>0) aaf(x)dx=0a[f(x)+f(x)]dx(a>0)

  • 对于 ∫ a b ( x − a ) ( b − x ) d x = ( b − a ) 2 8 π \int_a^b\sqrt{(x-a)(b-x)}dx=\cfrac{(b-a)^2}{8}\pi ab(xa)(bx) dx=8(ba)2π, ∫ a b d x ( x − a ) ( b − x ) = π \int_a^b\cfrac{dx}{\sqrt{(x-a)(b-x)}}=\pi ab(xa)(bx) dx=π

x − a + b 2 = b − a 2 sin ⁡ t ⇒ ∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 sin ⁡ t ) b − a 2 cos ⁡ t   d t t = x − a b − a ⇒ ∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t \begin{aligned} &x-\cfrac{a+b}2=\cfrac{b-a}2\sin t \Rightarrow\int_a^bf(x)dx=\int_{-\cfrac{\pi}2}^{\cfrac{\pi}2}f(\cfrac{a+b}2+\cfrac{b-a}2\sin t)\cfrac{b-a}2\cos t \ dt\\ &t=\cfrac{x-a}{b-a} \Rightarrow \int_a^bf(x)dx = \int_0^1(b-a)f[a+(b-a)t]dt \end{aligned} x2a+b=2basintabf(x)dx=2π2πf(2a+b+2basint)2bacost dtt=baxaabf(x)dx=01(ba)f[a+(ba)t]dt

一元函数微分积分学应用

应用场景公式
曲率公式 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 k=\cfrac{\mid y''\mid }{[1+(y')^2]^{\cfrac{3}{2}}} k=[1+(y)2]23y
曲率半径 R = 1 k R=\cfrac{1}{k} R=k1
曲率中心 m = x − y ′ ( 1 + y ′ 2 ) y ′ ′ , n = y + y ′ 2 + 1 y ′ ′ m=x-\cfrac{y'(1+y'^2)}{y''},n=y+\cfrac{y'^2+1}{y''} m=xyy(1+y2),n=y+yy2+1
曲线 y = y 1 ( x ) y=y_1(x) y=y1(x) y = y 2 ( x ) y=y_2(x) y=y2(x) x = a , x = b x=a,x=b x=a,x=b所围成的平面图形的面积 S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S=\int_{a}^{b}\mid y_1(x)-y_2(x)\mid dx S=aby1(x)y2(x)dx
曲线 r = r 1 ( θ ) r=r_1(\theta) r=r1(θ) r = r 2 ( θ ) r=r_2(\theta) r=r2(θ)与两射线 θ = α , θ = β \theta=\alpha,\theta=\beta θ=α,θ=β所围成的曲边扇形的面积 S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ S=\cfrac{1}{2}\int_{\alpha}^{\beta}\mid r_1^2(\theta)-r_2^2(\theta)\mid d\theta S=21αβr12(θ)r22(θ)dθ
曲线 y = y ( x ) y=y(x) y=y(x) x = a , x = b x=a,x=b x=a,x=b x x x轴所围成的曲边梯形绕 x x x轴旋转一周所得到的旋转体体积 V = ∫ a b π y 2 ( x ) d x V=\int_a^b\pi y^2(x)dx V=abπy2(x)dx
曲线 y = y 1 ( x ) y=y_1(x) y=y1(x) y = y 2 ( x ) y=y_2(x) y=y2(x) x = a , x = b x=a,x=b x=a,x=b所围成的平面图形绕 x x x轴旋转一周所得到的旋转体体积 V = π ∫ a b ∣ y 1 2 ( x ) − y 2 2 ( x ) ∣ d x V=\pi \int_a^b \mid y_1^2(x)-y_2^2(x)\mid dx V=πaby12(x)y22(x)dx
曲线 y = y ( x ) y=y(x) y=y(x) x = a , x = b x=a,x=b x=a,x=b x x x轴所围成的曲边梯形绕 y y y轴旋转一周所得到的旋转体体积 V = 2 π ∫ a b x ∣ y ( x ) ∣ d x V=2\pi \int_a^b x\mid y(x)\mid dx V=2πabxy(x)dx
曲线 y = y 1 ( x ) y=y_1(x) y=y1(x) y = y 2 ( x ) y=y_2(x) y=y2(x) x = a , x = b x=a,x=b x=a,x=b所围成的平面图形绕 y y y轴旋转一周所得到的旋转体体积 V = 2 π ∫ a b x ∣ y 1 ( x ) − y 2 ( x ) ∣ d x V=2\pi \int_a^b x\mid y_1(x)-y_2(x)\mid dx V=2πabxy1(x)y2(x)dx
变力沿直线做功:物体沿 x x x轴从点 a a a移动到点 b b b时,变力 F ( x ) F(x) F(x)所做的功 W = ∫ a b F ( x ) d x W=\int_a^bF(x)dx W=abF(x)dx
抽水做功:将容易中的水全部抽出需要做的功, A ( x ) A(x) A(x)代表截平面的面积 W = ρ g ∫ a b x A ( x ) d x W=\rho g \int_a^bxA(x)dx W=ρgabxA(x)dx
水压力:垂直浸没在水中的平板 A B C D ABCD ABCD的一侧受到的水压力 P = ρ g ∫ a b x [ f ( x ) − h ( x ) ] d x P=\rho g \int_a^bx[f(x)-h(x)]dx P=ρgabx[f(x)h(x)]dx
形心公式 x ‾ = ∬ D x d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) x d y ∫ a b d x ∫ 0 f ( x ) d y = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x \overline{x}=\cfrac{\underset{D}{\iint}xd\sigma}{\underset{D}{\iint}d\sigma}=\cfrac{\int_a^bdx\int_0^{f(x)}xdy}{\int_a^bdx\int_0^{f(x)}dy}=\cfrac{\int_a^bxf(x)dx}{\int_a^bf(x)dx} x=DdσDxdσ=abdx0f(x)dyabdx0f(x)xdy=abf(x)dxabxf(x)dx
形心公式 y ‾ = ∬ D y d σ ∬ D d σ = ∫ a b d x ∫ 0 f ( x ) y d y ∫ a b d x ∫ 0 f ( x ) d y = 1 2 ∫ a b f 2 ( x ) d x ∫ a b f ( x ) d x \overline{y}=\cfrac{\underset{D}{\iint}yd\sigma}{\underset{D}{\iint}d\sigma}=\cfrac{\int_a^bdx\int_0^{f(x)}ydy}{\int_a^bdx\int_0^{f(x)}dy}=\cfrac{\cfrac12\int_a^bf^2(x)dx}{\int_a^bf(x)dx} y=DdσDydσ=abdx0f(x)dyabdx0f(x)ydy=abf(x)dx21abf2(x)dx
直角坐标系光滑曲线弧长 s = ∫ a b 1 + [ y ′ ( x ) ] 2 d x s=\int_a^b\sqrt{1+[y'(x)]^2}dx s=ab1+[y(x)]2 dx
直角坐标系参数方程光滑曲线弧长 s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t s=\int_{\alpha}^{\beta}\sqrt{[x'(t)]^2+[y'(t)]^2}dt s=αβ[x(t)]2+[y(t)]2 dt
极坐标系光滑曲线弧长 s = ∫ α β [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ s=\int_{\alpha}^{\beta}\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta s=αβ[r(θ)]2+[r(θ)]2 dθ
曲线 y = y ( x ) y=y(x) y=y(x)在区间 [ a , b ] [a,b] [a,b]上的曲线弧段绕绕 x x x轴旋转一周所得到的旋转曲面的表面积 S = 2 π ∫ a b ∣ y ( x ) ∣ 1 + [ y ′ ( x ) ] 2 d x S=2\pi \int_a^b \mid y(x)\mid \sqrt{1+[y'(x)]^2}dx S=2πaby(x)1+[y(x)]2 dx
曲线 x = x ( t ) , y = y ( t ) x=x(t),y=y(t) x=x(t),y=y(t)在区间 [ α , β ] [\alpha,\beta] [α,β]上的曲线弧段绕绕 x x x轴旋转一周所得到的旋转曲面的表面积 S = 2 π ∫ α β ∣ y ( t ) ∣ [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t S=2\pi \int_{\alpha}^{\beta}\mid y(t)\mid \sqrt{[x'(t)]^2+[y'(t)]^2}dt S=2παβy(t)[x(t)]2+[y(t)]2 dt
在区间 [ a , b ] [a,b] [a,b]上,垂直于 x x x轴的平面截立体 Ω \Omega Ω所得到的截面面积为 A ( x ) A(x) A(x) Ω \Omega Ω的体积 V = ∫ a b A ( x ) d x V=\int_a^bA(x)dx V=abA(x)dx

二重积分计算法

∬ D f ( x , y ) d σ = \iint\limits_D f(x,y)d\sigma= Df(x,y)dσ=类型
∫ a b d x ∫ ϕ 1 ( x ) ϕ 2 ( x ) f ( x , y ) d y \int_a^bdx\int_{\phi_1(x)}^{\phi_2(x)}f(x,y)dy abdxϕ1(x)ϕ2(x)f(x,y)dy X X X型区域: ϕ 1 ( x ) ⩽ y ⩽ ϕ 2 ( x ) , a ⩽ x ⩽ b \phi_1(x) \leqslant y\leqslant \phi_2(x),a \leqslant x \leqslant b ϕ1(x)yϕ2(x),axb
∫ c d d y ∫ ψ 1 ( y ) ψ 2 ( y ) f ( x , y ) d x \int_c^d dy\int_{\psi_1(y)}^{\psi_2(y)}f(x,y)dx cddyψ1(y)ψ2(y)f(x,y)dx Y Y Y型区域: ψ 1 ( y ) ⩽ x ⩽ ψ 2 ( y ) , c ⩽ y ⩽ d \psi_1(y) \leqslant x \leqslant \psi_2(y),c \leqslant y \leqslant d ψ1(y)xψ2(y),cyd
∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r \int_{\alpha}^{\beta} d\theta \int_{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta,r\sin\theta)rdr αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr极点 O O O在区域 D D D外部
∫ α β d θ ∫ 0 r ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r \int_{\alpha}^{\beta} d\theta \int_{0}^{r(\theta)}f(r\cos\theta,r\sin\theta)rdr αβdθ0r(θ)f(rcosθ,rsinθ)rdr极点 O O O在区域 D D D边界上
∫ 0 2 π d θ ∫ 0 r ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r \int_{0}^{2\pi} d\theta \int_{0}^{r(\theta)}f(r\cos\theta,r\sin\theta)rdr 02πdθ0r(θ)f(rcosθ,rsinθ)rdr极点 O O O在区域 D D D内部
∬ D x y f ( x , y ) d x d y \iint\limits_{Dxy} f(x,y)dxdy Dxyf(x,y)dxdy ∬ D u v f [ x ( u , v ) , y ( u , v ) ]   ∣ ∂ ( x , y ) ∂ ( u , v ) ∣   d u d v \iint\limits_{Duv}f[x(u,v),y(u,v)]\ \mid \cfrac{\partial(x,y)}{\partial(u,v)}\mid \ dudv Duvf[x(u,v),y(u,v)] (u,v)(x,y) dudv

常微分方程的求解

一阶微分方程的求解

名称情形解法
变量可分离型 y ′ = f ( x ) g ( y ) y'=f(x)g(y) y=f(x)g(y) ∫ d y g ( y ) = ∫ f ( x ) d x \int \cfrac{dy}{g(y)}=\int f(x)dx g(y)dy=f(x)dx
可化为变量可分离型 y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y=f(ax+by+c) u = a x + b y + c u=ax+by+c u=ax+by+c
齐次型 y ′ = ϕ ( y x ) y'=\phi (\cfrac{y}{x}) y=ϕ(xy) u = y x u=\cfrac{y}{x} u=xy
齐次型 1 y ′ = ϕ ( x y ) \cfrac 1y'=\phi (\cfrac{x}{y}) y1=ϕ(yx) u = x y u=\cfrac{x}{y} u=yx
一阶线性型 y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x) y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x ∗ q ( x ) d x + C ] y=e^{-\int p(x)dx}[\int e^{\int p(x)dx}*q(x)dx+C] y=ep(x)dx[ep(x)dxq(x)dx+C]
伯努利方程 y ′ + p ( x ) y = q ( x ) y n y'+p(x)y=q(x)y^n y+p(x)y=q(x)yn y − n ∗ y ′ + p ( x ) y 1 − n = q ( x ) , z = y 1 − n y^{-n}*y'+p(x)y^{1-n}=q(x),z=y^{1-n} yny+p(x)y1n=q(x),z=y1n

二阶可降阶微分方程的求解

类型步骤
y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)缺y型 令 y ′ = p ( x ) , y ′ ′ = p ′ , 原 方 程 变 成 d p d x = f ( x , p ) 令y'=p(x),y''=p',原方程变成\cfrac{dp}{dx}=f(x,p) y=p(x)y=p,dxdp=f(x,p)
y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)缺x型 令 y ′ = p , y ′ ′ = d p d x = d p d y ∗ d y d x = d p d y ∗ p , 原 方 程 变 成 p d p d y = f ( y , p ) 令y'=p,y''=\cfrac{dp}{dx}=\cfrac{dp}{dy}*\cfrac{dy}{dx}=\cfrac{dp}{dy}*p,原方程变成p\cfrac{dp}{dy}=f(y,p) y=py=dxdp=dydpdxdy=dydpp,pdydp=f(y,p)

高阶常系数线性微分方程的求解

二阶常系数齐次线性微分方程的通解

对于 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0,对应的特征方程为 λ 2 + q λ + q = 0 \lambda^2+q\lambda+q=0 λ2+qλ+q=0,求其特征根

情况通解
p 2 − 4 q > 0 p^2-4q>0 p24q>0 y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x
p 2 − 4 q = 0 p^2-4q=0 p24q=0 y = ( C 1 + C 2 ) e λ x y=(C_1+C_2)e^{\lambda x} y=(C1+C2)eλx
p 2 − 4 q < 0 p^2-4q<0 p24q<0 y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) y=eαx(C1cosβx+C2sinβx)
二阶常系数齐次线性微分方程的特解

对于 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)

情况特解
f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y=eαxQn(x)xk, k = ( 0 − α 不 是 特 征 根 , 1 − α 是 单 特 征 根 , 2 − α 是 二 重 特 征 根 ) k=(0-\alpha不是特征根,1-\alpha是单特征根,2-\alpha是二重特征根) k=0α,1α,2α
f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_m(x)\cos \beta x+P_n(x)\sin \beta x] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx] y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) ( x ) sin ⁡ β x ] x k , l = m a x { m , n } y^*=e^{\alpha x}[Q_l^{(1)}(x)\cos \beta x+Q_{l}^{(2)}(x)\sin \beta x]x^k,l=max\{m,n\} y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk,l=max{m,n}, k = ( 0 − α ± β i 不 是 特 征 根 , 1 − α ± β i 是 特 征 根 ) k=(0-\alpha \pm\beta i不是特征根,1-\alpha \pm \beta i是特征根) k=(0α±βi1α±βi)
n阶常系数齐次线性微分方程的解

y ( n ) + p 1 y ( n − 1 ) + . . . + p n − 1 y ′ + p n y = 0 y^{(n)}+p_1y^{(n-1)}+...+p_{n-1}y'+p_ny=0 y(n)+p1y(n1)+...+pn1y+pny=0,对应的特征方程 λ n + p 1 λ n − 1 + . . . + p n − 1 λ + p n = 0 \lambda^n+p_1\lambda^{n-1}+...+p_{n-1}\lambda+p_n=0 λn+p1λn1+...+pn1λ+pn=0

情况结果
特征根为单实根 λ \lambda λ在通解中对应一项 C e λ x Ce^{\lambda x} Ceλx
特征根为 k k k重实根 λ \lambda λ在通解中对应 k k k ( C 1 + C 2 x + . . . + C k x k − 1 ) e λ x (C_1+C_2x+...+C_kx^{k-1})e^{\lambda x} (C1+C2x+...+Ckxk1)eλx
特征根为单复根 α ± β i \alpha\pm \beta i α±βi在通解中对应两项 e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) eαx(C1cosβx+C2sinβx)
特征根为 k k k重复根 α ± β i \alpha\pm \beta i α±βi在通解中对应两项 e α x [ ( C 1 + C 2 x + . . . + C k x k − 1 ) cos ⁡ β x + ( D 1 + D 2 x + . . . + D k x k − 1 ) sin ⁡ β x ] e^{\alpha x}[(C_1+C_2x+...+C_kx^{k-1})\cos\beta x+(D_1+D_2x+...+D_kx^{k-1})\sin\beta x] eαx[(C1+C2x+...+Ckxk1)cosβx+(D1+D2x+...+Dkxk1)sinβx]

欧拉方程

x 2 d 2 y d x 2 + p x d y d x + q y = f ( x ) x 2 y ′ ′ + p x y ′ + q y = f ( x ) 解 法 : 当 x > 0 , 令 x = e t ; 当 x < 0 , 令 x = − e t 然 后 将 y ′ , y ′ ′ 由 之 前 的 对 x 求 导 改 为 对 t 求 导 , 最 后 记 得 回 代 x > 0 的 换 元 结 果 是 d 2 y d t 2 + ( p − 1 ) d y d t + q y = f ( e t ) \begin{aligned} & x^2\cfrac{d^2y}{dx^2}+px\cfrac{dy}{dx}+qy=f(x) \\ & x^2y''+pxy'+qy=f(x)\\ & 解法:当x>0,令x=e^t;当x<0,令x=-e^t \\ & 然后将y',y''由之前的对x求导改为对t求导,最后记得回代\\ & x>0的换元结果是\cfrac{d^2y}{dt^2}+(p-1)\cfrac{dy}{dt}+qy=f(e^t) \end{aligned} x2dx2d2y+pxdxdy+qy=f(x)x2y+pxy+qy=f(x)x>0,x=etx<0,x=ety,yxtx>0dt2d2y+(p1)dtdy+qy=f(et)

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值