【SandQuant 量化投资】詹姆斯·托宾:风险条件下的流动性偏好行为

1958年,詹姆斯·托宾基于凯恩斯的流动性偏好理论,深入探究了期望利率及风险变化与流动性偏好之间的关系,并将模型扩展至包含无风险资产现金与多个非现金风险资产的投资组合中。

假设投资者只持有两种资产,现金和综合资产(consols),持有比例分别为 A 1 A_1 A1 A 2 A_2 A2,满足 A 1 + A 2 = 1 A_1+A_2=1 A1+A2=1。在不考虑通胀的情况下,现金是一种无风险零收益的资产,而综合资产可以产生收益 r r r

图1

图1上半部分,代表风险 σ g \sigma_g σg与期望收益 μ R \mu_R μR之间的关系,其中 O C i OC_i OCi代表收益机会曲线,表明投资者可以通过承受更大的风险以获得更高的期望收益。假设可以通过期望收益和风险描述投资者偏好,则可以获得如图 I i I_i Ii的无差异曲线(投资者在曲线上的选择是没有差异的)。由于对于给定的风险而言,投资者更倾向于获得较高的期望收益,因此有 I 2 > I 1 I_2>I_1 I2>I1

投资者的风险行为可以分为两种,风险厌恶者(Risk-averters)和风险爱好者(Risk-lovers)。风险厌恶者的无差异曲线向上弯曲(如图 I i I_i Ii),对于每增加一定的风险都期望获得更多的回报。同理,风险爱好者无差异曲线斜率向下,他们愿意牺牲期望收益,以换取获得超高收益的可能性。

图1下半部分,代表风险 σ g \sigma_g σg与持有综合资产比例 A 2 A_2 A2之间的关系。显然,当持有综合资产比例上升,现金减少,风险也会随之提高

  • 效用函数最大化

投资者依据最大化效用值进行决策,这个最值包含三个方面

(1)对于风险厌恶者而言,其最大值是收益机会曲线与效用曲线的切点 T i T_i Ti(上图所示);

(2)由于期望收益不可能无限大,因此存在一个角最大值(corner maximum),风险厌恶者 I i I_i Ii和风险爱好者 I i ′ I_i^{'} Ii都在 C C C点处获得最大效用值,风险爱好者在C点处效用值斜率小于机会曲线;(下图所示)

图2

(3)对于冲动交易者(plunger),愿意为了提高一点期望收益而冒风险的投资者而言,其角最大值可能会发生在原点处,即全部持有现金(下图所示 I 2 I_2 I2 C 1 C_1 C1)。这个同样可能发生在一个多元主义(diversifier)的风险厌恶者身上,只要效用函数斜率大于机会曲线。

图3
  • 从3个角度考察当利率变化时所带来的结果(见图4)

(1)利率上升后,机会曲线从 C 1 C_1 C1 C 2 C_2 C2,最优点从 T 1 T_1 T1移动到 T 2 T_2 T2,由于风险没有变化,持有综合资产(consols)的比例 A 2 A_2 A2 A 2 ( r 1 , σ g ) A_2(r_1,\sigma_g) A2(r1,σg)上升到 A 2 ( 2 r 1 , σ g ) A_2(2r_1,\sigma_g) A2(2r1,σg)。从图4可以看到,利率上升,对现金的需求量是下降的

(2)对于风险爱好者而言,利率的变化不会影响他们的持仓,因为他们已经在角最大值获得了最值。

(3)对于冲动交易者(plunger)而言,当利率上升时他们会将现金转移向综合资产(consols),如图3中 C 1 C_1 C1 C 2 C_2 C2 I 1 I_1 I1 I 3 I_3 I3

图4
  • 接着考察预期风险改变带来的影响

假设投资者当前处于状态 T 1 T_1 T1 A 2 ( r 1 , σ g ) A_2(r_1,\sigma_g) A2(r1,σg),当投资者的预期风险减少一半至 σ g / 2 \sigma_g/2 σg/2时,机会曲线斜率从 O C 1 OC_1 OC1移动至 O C 2 OC_2 OC2,风险-综合资产持有比例关系从 O B 1 OB_1 OB1移动至 O B 2 OB_2 OB2,此时投资者决策移动至 T 2 T_2 T2,所对应的综合资产持有比例增长至 A 2 ( r 1 , σ g 2 ) A_2(r_1,\frac{\sigma_g}{2}) A2(r1,2σg)(图4所示)。增加预期利率同样可以达到 T 2 T_2 T2,但那种情形下风险 O B 1 OB_1 OB1没有改变。而当风险下降一半时,持有综合资产的比例将再次翻倍,这将减少市场上的现金需求量。

  • 多元资产

在这之前都假设只有一种现金的替代资产(consols),现在将其拓展为包含多个非现金资产的组合,期望收益和风险将是资产组合的总体期望收益和风险,以包含两个资产为例,期望收益和风险分别为
μ R = x 1 r 1 + x 2 r 2 \mu_R = x_1r_1 + x_2r_2 μR=x1r1+x2r2

σ R 2 = 2 x 1 x 2 v 12 + x 1 2 v 1 2 + x 2 2 v 2 2 \sigma_R^{2} = 2x_1x_2v_{12}+x_1^2v_1^2+x_2^2v_2^2 σR2=2x1x2v12+x12v12+x22v22

其中 x i x_i xi是持有资产 i i i的比例, r i r_i ri是资产 i i i的收益,由于存在对无风险资产现金的需求,因此 ∑ i = 1 m x i = A 2 ≤ 1 \sum_{i=1}^{m}x_i=A_2 \leq 1 i=1mxi=A21,期望收益是一组平行线,风险是一组曲线(如图5所示)。对于给定的期望收益,投资者总是寻找最小风险的组合,因此投资者将选择 C C C C ′ C^{'} C所代表的资产组合。上述问题可以一般为对于给定的期望收益 μ R \mu_R μR,如何确定 x i x_i xi使得风险 σ R 2 \sigma_R^2 σR2最小。

图5

上述分析建立在假设现金是无风险资产,故该理论有意将资产选择限制在货币资产上,尽管现金存在购买力变化的风险,但相对于这些资产而言,它是无风险的。文中指出,为了简化分析将投资组合问题拆解为不同层次的资产之间和资产内部的配置问题是很有必要的。

References

[1] Tobin, J. “Liquidity Preference as Behavior Towards Risk.” The Review of Economic Studies 25, no. 2 (1958): 65–86.

[2] “Consol (Bond).” Wikipedia. Wikimedia Foundation, October 12, 2021.


欢迎关注~ SandQuant 专注于全球金融数据和量化投资策略
公众号后台回复关键词211228,即可获取PDF原始文献。

版权与免责声明:未经授权,禁止转载。本文所涉信息仅供参考,不构成任何投资建议。除特别说明外,本文图表均直接或间接来自相关文献,版权归原作者和期刊所有。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值