针对某道路交通场景目标检测模型YOLOv8s和YOLOv8n检测测试结果分析——针对YOLOv8s模型设置不同confThred和iouThred对检测结果的影响及分析

本文深入分析了针对道路交通场景的YOLOv8s模型在调整confThred和iouThred参数时对目标检测结果的影响。研究发现,提高confThred可能导致部分低置信度目标漏检,但能减少误检,特别是对被遮挡目标的检测。另一方面,调高iouThred对复杂背景或遮挡目标的漏检改善有限。建议保持默认的iou_thred=0.45,并适度提高conf_thred,例如设置为0.3。
摘要由CSDN通过智能技术生成

针对某道路交通场景目标检测模型YOLOv8s和YOLOv8n检测测试结果分析

——针对YOLOv8s模型设置不同confThred和iouThred对检测结果的影响及分析

0 说明:

0.1 图示中的目标框上的数字ID对应目标类型详情如下:

0 1 2 3 4 5 6 7 8 9 10
pedes car bus truck bike moto tricycle coni warn tralight specialVehicle

0.2 训练模型数据分配

训练集:5858

验证集:1400

1 v8s模型TRT检测结果分析

1.1 测试数据说明

① 图片都是2分钟一张录的,相对比较广泛。

② 逐帧详细观察ip100共计120张图片,和ip103共计120张。

③ 检测结果中,由于训练集场景与测试集场景完全一致,故针对轿车,公交,卡车类型基本没有误检现象,故主要针对行人,摩托和自行车,三

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃油淋鸡的莫何

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值