二项式反演

(上接斯特林数?)emmm顺带一提,我好像还没学二项式反演,,那我们先学一下。

如果f(n)=\sum_{i=0}^n\binom{n}{i}g(i)

g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)

证明:\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)=\sum_{i=0}^n\binom{n}{i}(-1)^{n-i}\sum_{j=0}^i\binom{i}{j}g(j)=\sum_{j=0}^ng(j)\sum_{i=j}^n\binom{n}{j}\binom{n-j}{i-j}(-1)^{n-i}=\sum_{j=0}^ng(j)\sum_{i=0}^{n-j}\binom{n}{j}\binom{n-j}{i}(-1)^{n-j-i}=\sum_{j=0}^ng(j)\binom{n}{j}[j==n]=g(n)

最后一步的理由是\binom{n-j}{i}(-1)^{n-j-i}其实就是(1+(-1))^{n-j}的二项式展开形式,所以直接抵完了。

经典应用1:

求错排,设f(n),g(n)分别为错排,随便排的方案数。

枚举有几个放错了得到g(n)=\sum_{i=0}^n\binom{n}{i}f(i)

那直接反演,,我懒得打公式

如果要算概率,那再除以n!。fsy巧妙的发现这就是e的倒数的泰勒展开。

反正只要是跟组合数有关的都往这方面想一下啦(下接斯特林数TAT)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值