【耕地质量等级评价-Python实现 | 00】 前言

        耕地质量等级评价是2019年下达的任务,该项工作主要分为耕地质量变更调查表的审查、耕地质量变更调查表的转换、对耕地斑块进行指标的插值和赋值、对耕地斑块赋值结果进行评价、统计分析及相关表格和文本的生成五大斑块。后续【耕地质量等级评价-Python实现】系列将就这五部分进行python代码实现。

        【商务合作联系qq】:1286257618

        【技术交流群】:991807590

        参考规范:

                《耕地质量等级》GB/T 33649-2016

                《农业农村部耕地质量监测保护中心关于印发《全国耕地质量等级评价指标体系》的通知》耕地评价函【2019】87号

                《农业农村部耕地质量监测保护中心关于印发《全国九大农区及省级耕地质量监测指标分级标准(试行)》的通知》耕地评价函【2019】30号

                《关于进一步做好县级耕地质量等级调查评价成果完善及上报工作的通知》川耕肥函【2020】7号

                  

### 使用Python进行耕地质量等级评价 #### 数据准备与预处理 为了评估耕地质量等级,通常需要收集多个影响因素的数据。这些因素可能包括土壤肥力、地形条件、水资源状况等。数据可以存储在CSV文件或其他表格形式中。 ```python import pandas as pd # 加载训练数据集 data_train = pd.read_csv('train.csv') # 查看前几行数据以确认加载成功并理解其结构 print(data_train.head()) ``` #### 特征提取与标准化 从原始数据集中分离出用于分析的特征向量以及目标变量(即耕地质量评分)。考虑到不同属性间可能存在数量级差异,建议对数值型特征实施标准化操作。 ```python from sklearn.preprocessing import StandardScaler # 提取特征和标签 features = data_train.iloc[:, :-1].values # 假定最后一列为耕地质量得分 labels = data_train['quality_score'].values # 创建StandardScaler对象并对特征进行转换 scaler = StandardScaler() scaled_features = scaler.fit_transform(features) # 将标准化后的特征重新组合成DataFrame以便后续使用 df_scaled = pd.DataFrame(scaled_features, columns=data_train.columns[:-1]) ``` #### 构建模型与参数调整 采用机器学习算法构建预测模型来估计未知样本的土地质量级别。这里可以选择支持向量机(SVM)、随机森林(RandomForest)等多种分类器,并通过交叉验证优化超参数设置。 ```python from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( df_scaled, labels, test_size=0.2, random_state=42) # 初始化RandomForestClassifier实例 rf_clf = RandomForestClassifier(random_state=42) # 定义网格搜索范围内的候选参数值列表 param_grid = { 'n_estimators': [50, 100], 'max_depth': [None, 10, 20] } # 执行网格搜索找到最佳参数配置 grid_search = GridSearchCV(rf_clf, param_grid, cv=5) grid_search.fit(X_train, y_train) best_rf_model = grid_search.best_estimator_ ``` #### 结果解释与应用 完成上述步骤之后,就可以利用已训练好的模型对未来的新地块做出质量评级预测了。同时还可以绘制重要性图表帮助解读哪些因子对于最终决策起到了更为关键的作用[^1]。 ```python import matplotlib.pyplot as plt import numpy as np def plot_feature_importances(model): n_features = model.n_features_in_ feature_names = list(df_scaled.columns) fig, ax = plt.subplots(figsize=(8, 6)) indices = np.argsort(-model.feature_importances_) plt.barh(range(n_features), model.feature_importances_[indices], align='center') plt.yticks(np.arange(n_features), [feature_names[i] for i in indices]) plt.xlabel("Feature importance") plt.ylabel("Feature") plt.title("Importance of each feature") plot_feature_importances(best_rf_model) plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值