一、问题
最近我继续攻克老师布置的作业,也是通过博客来记录一下自己的解决问题的过程,问题如下:
(1) 请推导出单径瑞利信道中的BPSK相干解调的理论误码率性能,并画出比特信噪比(EbN0)与误码率(SER)的关系曲线。
通过阅读与理解CSDN、相关书籍的资料,我基本理解了题目的理论误码率推导过程,下面是对于单径瑞利信道,采用BPSK调制以及相干解调的理论误比特率推导过程。
二、理论误码率推导过程
1)表示发送信号
我们设二进制相移键控BPSK中发射的两个信号波形分别表示为
s
1
(
t
)
=
g
(
t
)
,
s
2
(
t
)
=
−
g
(
t
)
s_1\left( t \right) =g\left( t \right) ,s_2\left( t \right) =-g\left( t \right)
s1(t)=g(t),s2(t)=−g(t)。其中
g
(
t
)
g\left( t \right)
g(t)是在一个符号间隔
T
T
T内非零的任意实信号脉冲,脉冲能量为
ξ
g
\xi _g
ξg。这两个发射信号是双极性信号,可由能量表示为
s
1
(
t
)
=
ξ
g
,
s
2
(
t
)
=
−
ξ
g
s_1\left( t \right) =\sqrt{\xi _g},s_2\left( t \right) =-\sqrt{\xi _g}
s1(t)=ξg,s2(t)=−ξg。两个信号点如图2.1所示。
2)表示接收信号
单径瑞利信道可视为平坦慢衰落信道,平坦衰落的信道会使发送信号
s
(
t
)
s\left( t \right)
s(t)发生乘性失真,而慢衰落信道则可将乘性失真过程在至少一个符号间隔
T
T
T内看作为一个常数的过程。因此我们假设两个信号是等概发送,若发送信号为
s
1
(
t
)
=
g
(
t
)
s_1\left( t \right) =g\left( t \right)
s1(t)=g(t),则在一个符号间隔
T
T
T内的等效低通接收信号为
r
1
(
t
)
=
α
e
−
j
ϕ
s
1
(
t
)
+
z
(
t
)
(
0
≤
t
≤
T
)
(2.1)
r_1\left( t \right) =\alpha e^{-j\phi}s_1\left( t \right) +z\left( t \right) \ \left( 0\le t\le T \right) \tag{2.1}
r1(t)=αe−jϕs1(t)+z(t) (0≤t≤T)(2.1)
其中,
α
\alpha
α为信号衰减,
ϕ
\phi
ϕ是信号相移,
z
(
t
)
z\left( t \right)
z(t)为复高斯白噪声过程。
由于单径瑞利信道为慢衰落信道,其信道衰落足够慢,这样会使得相移
ϕ
\phi
ϕ能够从接收信号中无误差地估计出来。因此可以实现接收信号的理想相干检测,即相干解调。于是对于BPSK调制,可用一个匹配滤波器来处理接收信号。
3)计算固定衰减条件的条件误码率
对于慢衰落信道,即信号衰减
α
\alpha
α固定,不随时间发生改变。那么由匹配滤波器的解调器得到的接收信号为
r
=
α
s
1
+
n
=
α
ξ
g
+
n
(2.2)
r=\alpha s_1+n=\alpha \sqrt{\xi _g}+n \tag{2.2}
r=αs1+n=αξg+n(2.2)
其中
n
n
n表示均值为0,噪声方差为
σ
n
2
=
N
0
2
\sigma _{n}^{2}=\frac{N_0}{2}
σn2=2N0的加性高斯噪声分量。我们可以根据判决变量来确定误码率。将接收信号
r
r
r与阈值0比较。若
r
>
0
r>0
r>0则判决接收信号为
s
1
(
t
)
s_1\left( t \right)
s1(t)。若
r
<
0
r<0
r<0则判决为
s
2
(
t
)
s_2\left( t \right)
s2(t)。因此接收信号
r
r
r判决为
s
1
(
t
)
,
s
2
(
t
)
s_1\left( t \right) ,s_2\left( t \right)
s1(t),s2(t)的概率密度函数分别为
p
(
r
∣
s
1
)
=
−
1
π
N
0
e
−
(
r
−
α
ξ
g
)
2
/
N
0
(2.3)
p\left( r\left| s_1 \right. \right) =-\frac{1}{\sqrt{\pi N_0}}e^{-\left( r-\alpha \sqrt{\xi _g} \right) ^2/N_0} \tag{2.3}
p(r∣s1)=−πN01e−(r−αξg)2/N0(2.3)
p ( r ∣ s 2 ) = − 1 π N 0 e − ( r + α ξ g ) 2 / N 0 (2.4) p\left( r\left| s_2 \right. \right) =-\frac{1}{\sqrt{\pi N_0}}e^{-\left( r+\alpha \sqrt{\xi _g} \right) ^2/N_0} \tag{2.4} p(r∣s2)=−πN01e−(r+αξg)2/N0(2.4)
两个信号的判决的概率密度函数如图2.2所示。
在发送信号为 s 1 ( t ) = g ( t ) s_1\left( t \right) =g\left( t \right) s1(t)=g(t)的条件下,错误概率为 r < 0 r<0 r<0的概率,即
p ( e ∣ s 1 ) = ∫ − ∞ 0 p ( r ∣ s 1 ) d r = − 1 π N 0 ∫ − ∞ 0 exp [ − ( r − α ξ g ) 2 / N 0 ] d r = Q ( 2 α 2 ξ g N 0 ) p\left( e\left| s_1 \right. \right) =\int_{-\infty}^0{p\left( r\left| s_1 \right. \right) dr} =-\frac{1}{\sqrt{\pi N_0}}\int_{-\infty}^0{\exp \left[ -\left( r-\alpha \sqrt{\xi _g} \right) ^2/N_0 \right] dr} =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right) p(e∣s1)=∫−∞0p(r∣s1)dr=−πN01∫−∞0exp[−(r−αξg)2/N0]dr=Q N02α2ξg
其中
Q
(
x
)
Q\left( x \right)
Q(x)为Q函数,是用来表示高斯分布的概率密度函数尾部曲线下的面积,定义为
Q
(
x
)
=
1
2
π
∫
x
∞
e
−
t
2
/
2
d
t
,
x
≥
0
Q\left( x \right) =\frac{1}{\sqrt{2\pi}}\int_x^{\infty}{e^{-t^2/2}dt},x\ge 0
Q(x)=2π1∫x∞e−t2/2dt,x≥0。
同样假设发送信号为
s
2
(
t
)
=
−
g
(
t
)
,
r
=
−
α
ξ
g
+
n
s_2\left( t \right) =-g\left( t \right) ,r=-\alpha \sqrt{\xi _g}+n
s2(t)=−g(t),r=−αξg+n,其
r
>
0
r>0
r>0的错误概率也为
p
(
e
∣
s
2
)
=
Q
(
2
α
2
ξ
g
N
0
)
p\left( e\left| s_2 \right. \right) =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right)
p(e∣s2)=Q(N02α2ξg)。因为
s
1
(
t
)
,
s
2
(
t
)
s_1\left( t \right) ,s_2\left( t \right)
s1(t),s2(t)是等概发送的,由全概率公式可得平均错误概率为
P
2
(
γ
b
)
=
p
(
s
1
)
p
(
e
∣
s
1
)
+
p
(
s
2
)
p
(
e
∣
s
2
)
=
1
2
p
(
e
∣
s
1
)
+
1
2
p
(
e
∣
s
2
)
=
Q
(
2
α
2
ξ
g
N
0
)
=
Q
(
2
γ
b
)
P_2\left( \gamma _b \right) =p\left( s_1 \right) p\left( e\left| s_1 \right. \right) +p\left( s_2 \right) p\left( e\left| s_2 \right. \right) =\frac{1}{2}p\left( e\left| s_1 \right. \right) +\frac{1}{2}p\left( e\left| s_2 \right. \right) =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right) =Q\left( \sqrt{2\gamma _b} \right)
P2(γb)=p(s1)p(e∣s1)+p(s2)p(e∣s2)=21p(e∣s1)+21p(e∣s2)=Q
N02α2ξg
=Q(2γb)
其中 γ b = α 2 ξ g N 0 \gamma _b=\frac{\alpha ^2\xi _g}{N_0} γb=N0α2ξg。上式 P 2 ( γ b ) P_2\left( \gamma _b \right) P2(γb)即为条件误比特率。
4)计算衰减变化的误比特率
上式得到的条件误比特率
P
2
(
γ
b
)
P_2\left( \gamma _b \right)
P2(γb)的条件是信号衰减
α
\alpha
α固定不变。为了得到信号衰减
α
\alpha
α随机变化的误码率,需要将条件误比特率
P
2
(
γ
b
)
P_2\left( \gamma _b \right)
P2(γb)对
γ
b
\gamma _b
γb的概率密度函数求平均,即衰减变化的误比特率为
P
2
=
∫
0
∞
P
2
(
γ
b
)
p
(
γ
b
)
d
γ
b
(2.5)
P_2=\int_0^{\infty}{P_2\left( \gamma _b \right) p\left( \gamma _b \right) d\gamma _b} \tag{2.5}
P2=∫0∞P2(γb)p(γb)dγb(2.5)
其中
p
(
γ
b
)
p\left( \gamma _b \right)
p(γb)是
α
\alpha
α为随机变量
γ
b
\gamma _b
γb时的概率密度函数。因为作为随机变量的信号衰减
α
\alpha
α服从瑞利分布,所以
α
2
\alpha ^2
α2是自由度为2的
χ
2
\chi ^2
χ2分布,即
α
2
∽
χ
2
(
2
)
\alpha ^2\backsim \chi ^2\left( 2 \right)
α2∽χ2(2)。因此,
γ
b
\gamma _b
γb也是
χ
2
\chi ^2
χ2分布,则其概率密度函数为
p
(
γ
b
)
=
1
γ
ˉ
b
e
−
γ
b
/
γ
ˉ
b
(2.6)
p\left( \gamma _b \right) =\frac{1}{\bar{\gamma}_b}e^{-\gamma _b/\bar{\gamma}_b} \tag{2.6}
p(γb)=γˉb1e−γb/γˉb(2.6)
其中
γ
ˉ
b
\bar{\gamma}_b
γˉb为平均信噪比,定义为
γ
ˉ
b
=
ξ
g
N
0
E
(
α
2
)
=
2
ξ
g
N
0
\bar{\gamma}_b=\frac{\xi _g}{N_0}E\left( \alpha ^2 \right) =2\frac{\xi _g}{N_0}
γˉb=N0ξgE(α2)=2N0ξg。其中
E
(
α
2
)
E\left( \alpha ^2 \right)
E(α2)为
α
2
\alpha ^2
α2的均值,为2。
因此,将式(2.6)的
γ
b
\gamma _b
γb的概率密度函数
p
(
γ
b
)
p\left( \gamma _b \right)
p(γb)代入衰减变化的误比特率公式(2.5)中,计算积分,即可得到误比特率为
P
2
=
1
2
(
1
−
γ
ˉ
b
1
+
γ
ˉ
b
)
=
1
2
(
1
−
2
ξ
g
N
0
1
+
2
ξ
g
N
0
)
(2.7)
P_2=\frac{1}{2}\left( 1-\sqrt{\frac{\bar{\gamma}_b}{1+\bar{\gamma}_b}} \right) =\frac{1}{2}\left( 1-\sqrt{\frac{2\frac{\xi _g}{N_0}}{1+2\frac{\xi _g}{N_0}}} \right) \tag{2.7}
P2=21(1−1+γˉbγˉb)=21
1−1+2N0ξg2N0ξg
(2.7)
定义比特信噪比为
B
S
N
R
=
2
ξ
g
N
0
BSNR=2\frac{\xi _g}{N_0}
BSNR=2N0ξg。因此式(2.7)的误比特率可进一步用比特信噪比表示为
P
2
=
1
2
(
1
−
B
S
N
R
1
+
B
S
N
R
)
(2.8)
P_2=\frac{1}{2}\left( 1-\sqrt{\frac{BSNR}{1+BSNR}} \right) \tag{2.8}
P2=21(1−1+BSNRBSNR)(2.8)
式(2.8)即为在单径瑞利信道中使用BPSK相干解调的理论误比特率。需要注意的是,在推导过程中,我们是假定在慢衰落信道中得到的相移估计值是无噪的,而这种理想条件在实际中并不成立。
三、使用MATLAB绘制理论误码率曲线
首先MATLAB软件自带有绘制误比特率曲线的工具,即bertool工具。我们先使用bertool工具来绘制理论误比特率曲线,设置比特信噪比(Eb/N0)范围为-30到30dB,信道选用单径瑞利信道,调制类型选用BPSK,并使用相干解调,设置如图3.1所示:
使用bertool工具绘制出的理论误比特率曲线如图3.2所示,可以得出随着比特信噪比的增加,使用BPSK相干解调的理论误比特率逐渐减小。在比特信噪比为10dB时误比特率约为0.02327。
接着我根据推导出的单径瑞利信道中的使用BPSK相干解调的理论误比特率公式,即式(2.8),使用MATLAB编写代码来实现理论误比特率曲线的绘制。使用推导出的公式得出的理论误比特率曲线如图3.3所示。
根据图形也可以得出随着比特信噪比的增加,理论误码率在逐渐减小,当比特信噪比为10dB时误码率约为0.02327,该数值基本与使用bertool工具绘制出的理论误码率相同。
四、总结
谢谢大家看到这里!这次的作业时隔将近一个月才写好,期间主要在搞其他任务,哈哈不过总算是写完一半了,这次主要是通过看经典书籍来消化知识的,对于第二问的信道估计也快解决了,应该很快就能做出来,还请读者们多多指教,谢谢!世上无难事,只要肯登攀。加油!
这里是本文的参考文献:
[1]:数字通信(第四版)
[2]:单径瑞利信道中的BPSK相干解调的(理论)误码率性能
[3]:MATLAB的bertool绘制误码率理论值与仿真值对比曲线
[4]:dB的换算