单径瑞利信道的BPSK相干解调的理论误码率推导与MATLAB分析(1)

本文详细介绍了单径瑞利信道下BPSK调制的相干解调理论误码率推导过程,从信号模型、接收信号、条件误码率计算到衰减变化的误比特率公式,最终通过MATLAB的bertool工具和自编代码绘制了误码率曲线,验证了理论分析的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题

       最近我继续攻克老师布置的作业,也是通过博客来记录一下自己的解决问题的过程,问题如下:

(1) 请推导出单径瑞利信道中的BPSK相干解调的理论误码率性能,并画出比特信噪比(EbN0)与误码率(SER)的关系曲线。

通过阅读与理解CSDN、相关书籍的资料,我基本理解了题目的理论误码率推导过程,下面是对于单径瑞利信道,采用BPSK调制以及相干解调的理论误比特率推导过程。

二、理论误码率推导过程

1)表示发送信号
       我们设二进制相移键控BPSK中发射的两个信号波形分别表示为 s 1 ( t ) = g ( t ) , s 2 ( t ) = − g ( t ) s_1\left( t \right) =g\left( t \right) ,s_2\left( t \right) =-g\left( t \right) s1(t)=g(t),s2(t)=g(t)。其中 g ( t ) g\left( t \right) g(t)是在一个符号间隔 T T T内非零的任意实信号脉冲,脉冲能量 ξ g \xi _g ξg。这两个发射信号是双极性信号,可由能量表示为 s 1 ( t ) = ξ g , s 2 ( t ) = − ξ g s_1\left( t \right) =\sqrt{\xi _g},s_2\left( t \right) =-\sqrt{\xi _g} s1(t)=ξg ,s2(t)=ξg 。两个信号点如图2.1所示。
图1:BPSK的两个信号点

图2.1: BPSK的两个信号点

2)表示接收信号
       单径瑞利信道可视为平坦慢衰落信道,平坦衰落的信道会使发送信号 s ( t ) s\left( t \right) s(t)发生乘性失真,而慢衰落信道则可将乘性失真过程在至少一个符号间隔 T T T内看作为一个常数的过程。因此我们假设两个信号是等概发送,若发送信号为 s 1 ( t ) = g ( t ) s_1\left( t \right) =g\left( t \right) s1(t)=g(t),则在一个符号间隔 T T T内的等效低通接收信号为
r 1 ( t ) = α e − j ϕ s 1 ( t ) + z ( t )   ( 0 ≤ t ≤ T ) (2.1) r_1\left( t \right) =\alpha e^{-j\phi}s_1\left( t \right) +z\left( t \right) \ \left( 0\le t\le T \right) \tag{2.1} r1(t)=αejϕs1(t)+z(t) (0tT)(2.1)

其中, α \alpha α为信号衰减, ϕ \phi ϕ是信号相移, z ( t ) z\left( t \right) z(t)为复高斯白噪声过程。
       由于单径瑞利信道为慢衰落信道,其信道衰落足够慢,这样会使得相移 ϕ \phi ϕ能够从接收信号中无误差地估计出来。因此可以实现接收信号的理想相干检测,即相干解调。于是对于BPSK调制,可用一个匹配滤波器来处理接收信号。

3)计算固定衰减条件的条件误码率
       对于慢衰落信道,即信号衰减 α \alpha α固定,不随时间发生改变。那么由匹配滤波器的解调器得到的接收信号为
r = α s 1 + n = α ξ g + n (2.2) r=\alpha s_1+n=\alpha \sqrt{\xi _g}+n \tag{2.2} r=αs1+n=αξg +n(2.2)

其中 n n n表示均值为0,噪声方差 σ n 2 = N 0 2 \sigma _{n}^{2}=\frac{N_0}{2} σn2=2N0的加性高斯噪声分量。我们可以根据判决变量来确定误码率。将接收信号 r r r与阈值0比较。若 r > 0 r>0 r>0则判决接收信号为 s 1 ( t ) s_1\left( t \right) s1(t)。若 r < 0 r<0 r<0则判决为 s 2 ( t ) s_2\left( t \right) s2(t)。因此接收信号 r r r判决为 s 1 ( t ) , s 2 ( t ) s_1\left( t \right) ,s_2\left( t \right) s1(t),s2(t)的概率密度函数分别为
p ( r ∣ s 1 ) = − 1 π N 0 e − ( r − α ξ g ) 2 / N 0 (2.3) p\left( r\left| s_1 \right. \right) =-\frac{1}{\sqrt{\pi N_0}}e^{-\left( r-\alpha \sqrt{\xi _g} \right) ^2/N_0} \tag{2.3} p(rs1)=πN0 1e(rαξg )2/N0(2.3)

p ( r ∣ s 2 ) = − 1 π N 0 e − ( r + α ξ g ) 2 / N 0 (2.4) p\left( r\left| s_2 \right. \right) =-\frac{1}{\sqrt{\pi N_0}}e^{-\left( r+\alpha \sqrt{\xi _g} \right) ^2/N_0} \tag{2.4} p(rs2)=πN0 1e(r+αξg )2/N0(2.4)

两个信号的判决的概率密度函数如图2.2所示。
图2:判决的概率密度函数

图2.2: 判决的概率密度函数

       在发送信号为 s 1 ( t ) = g ( t ) s_1\left( t \right) =g\left( t \right) s1(t)=g(t)的条件下,错误概率为 r < 0 r<0 r<0的概率,即
p ( e ∣ s 1 ) = ∫ − ∞ 0 p ( r ∣ s 1 ) d r = − 1 π N 0 ∫ − ∞ 0 exp ⁡ [ − ( r − α ξ g ) 2 / N 0 ] d r = Q ( 2 α 2 ξ g N 0 ) p\left( e\left| s_1 \right. \right) =\int_{-\infty}^0{p\left( r\left| s_1 \right. \right) dr} =-\frac{1}{\sqrt{\pi N_0}}\int_{-\infty}^0{\exp \left[ -\left( r-\alpha \sqrt{\xi _g} \right) ^2/N_0 \right] dr} =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right) p(es1)=0p(rs1)dr=πN0 10exp[(rαξg )2/N0]dr=Q N02α2ξg

其中 Q ( x ) Q\left( x \right) Q(x)为Q函数,是用来表示高斯分布的概率密度函数尾部曲线下的面积,定义为 Q ( x ) = 1 2 π ∫ x ∞ e − t 2 / 2 d t , x ≥ 0 Q\left( x \right) =\frac{1}{\sqrt{2\pi}}\int_x^{\infty}{e^{-t^2/2}dt},x\ge 0 Q(x)=2π 1xet2/2dt,x0
       同样假设发送信号为 s 2 ( t ) = − g ( t ) , r = − α ξ g + n s_2\left( t \right) =-g\left( t \right) ,r=-\alpha \sqrt{\xi _g}+n s2(t)=g(t),r=αξg +n,其 r > 0 r>0 r>0的错误概率也为 p ( e ∣ s 2 ) = Q ( 2 α 2 ξ g N 0 ) p\left( e\left| s_2 \right. \right) =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right) p(es2)=Q(N02α2ξg )。因为 s 1 ( t ) , s 2 ( t ) s_1\left( t \right) ,s_2\left( t \right) s1(t),s2(t)是等概发送的,由全概率公式可得平均错误概率为
P 2 ( γ b ) = p ( s 1 ) p ( e ∣ s 1 ) + p ( s 2 ) p ( e ∣ s 2 ) = 1 2 p ( e ∣ s 1 ) + 1 2 p ( e ∣ s 2 ) = Q ( 2 α 2 ξ g N 0 ) = Q ( 2 γ b ) P_2\left( \gamma _b \right) =p\left( s_1 \right) p\left( e\left| s_1 \right. \right) +p\left( s_2 \right) p\left( e\left| s_2 \right. \right) =\frac{1}{2}p\left( e\left| s_1 \right. \right) +\frac{1}{2}p\left( e\left| s_2 \right. \right) =Q\left( \sqrt{\frac{2\alpha ^2\xi _g}{N_0}} \right) =Q\left( \sqrt{2\gamma _b} \right) P2(γb)=p(s1)p(es1)+p(s2)p(es2)=21p(es1)+21p(es2)=Q N02α2ξg =Q(2γb )

其中 γ b = α 2 ξ g N 0 \gamma _b=\frac{\alpha ^2\xi _g}{N_0} γb=N0α2ξg。上式 P 2 ( γ b ) P_2\left( \gamma _b \right) P2(γb)即为条件误比特率。

4)计算衰减变化的误比特率
       上式得到的条件误比特率 P 2 ( γ b ) P_2\left( \gamma _b \right) P2(γb)的条件是信号衰减 α \alpha α固定不变。为了得到信号衰减 α \alpha α随机变化的误码率,需要将条件误比特率 P 2 ( γ b ) P_2\left( \gamma _b \right) P2(γb) γ b \gamma _b γb的概率密度函数求平均,即衰减变化的误比特率为
P 2 = ∫ 0 ∞ P 2 ( γ b ) p ( γ b ) d γ b (2.5) P_2=\int_0^{\infty}{P_2\left( \gamma _b \right) p\left( \gamma _b \right) d\gamma _b} \tag{2.5} P2=0P2(γb)p(γb)dγb(2.5)

其中 p ( γ b ) p\left( \gamma _b \right) p(γb) α \alpha α为随机变量 γ b \gamma _b γb时的概率密度函数。因为作为随机变量的信号衰减 α \alpha α服从瑞利分布,所以 α 2 \alpha ^2 α2是自由度为2的 χ 2 \chi ^2 χ2分布,即 α 2 ∽ χ 2 ( 2 ) \alpha ^2\backsim \chi ^2\left( 2 \right) α2χ2(2)。因此, γ b \gamma _b γb也是 χ 2 \chi ^2 χ2分布,则其概率密度函数为
p ( γ b ) = 1 γ ˉ b e − γ b / γ ˉ b (2.6) p\left( \gamma _b \right) =\frac{1}{\bar{\gamma}_b}e^{-\gamma _b/\bar{\gamma}_b} \tag{2.6} p(γb)=γˉb1eγb/γˉb(2.6)

其中 γ ˉ b \bar{\gamma}_b γˉb为平均信噪比,定义为 γ ˉ b = ξ g N 0 E ( α 2 ) = 2 ξ g N 0 \bar{\gamma}_b=\frac{\xi _g}{N_0}E\left( \alpha ^2 \right) =2\frac{\xi _g}{N_0} γˉb=N0ξgE(α2)=2N0ξg。其中 E ( α 2 ) E\left( \alpha ^2 \right) E(α2) α 2 \alpha ^2 α2的均值,为2。
       因此,将式(2.6)的 γ b \gamma _b γb的概率密度函数 p ( γ b ) p\left( \gamma _b \right) p(γb)代入衰减变化的误比特率公式(2.5)中,计算积分,即可得到误比特率为
P 2 = 1 2 ( 1 − γ ˉ b 1 + γ ˉ b ) = 1 2 ( 1 − 2 ξ g N 0 1 + 2 ξ g N 0 ) (2.7) P_2=\frac{1}{2}\left( 1-\sqrt{\frac{\bar{\gamma}_b}{1+\bar{\gamma}_b}} \right) =\frac{1}{2}\left( 1-\sqrt{\frac{2\frac{\xi _g}{N_0}}{1+2\frac{\xi _g}{N_0}}} \right) \tag{2.7} P2=21(11+γˉbγˉb )=21 11+2N0ξg2N0ξg (2.7)

定义比特信噪比 B S N R = 2 ξ g N 0 BSNR=2\frac{\xi _g}{N_0} BSNR=2N0ξg。因此式(2.7)的误比特率可进一步用比特信噪比表示为
P 2 = 1 2 ( 1 − B S N R 1 + B S N R ) (2.8) P_2=\frac{1}{2}\left( 1-\sqrt{\frac{BSNR}{1+BSNR}} \right) \tag{2.8} P2=21(11+BSNRBSNR )(2.8)

式(2.8)即为在单径瑞利信道中使用BPSK相干解调的理论误比特率。需要注意的是,在推导过程中,我们是假定在慢衰落信道中得到的相移估计值是无噪的,而这种理想条件在实际中并不成立。

三、使用MATLAB绘制理论误码率曲线

       首先MATLAB软件自带有绘制误比特率曲线的工具,即bertool工具。我们先使用bertool工具来绘制理论误比特率曲线,设置比特信噪比(Eb/N0)范围为-30到30dB,信道选用单径瑞利信道,调制类型选用BPSK,并使用相干解调,设置如图3.1所示:

在这里插入图片描述

图3.1: bertool工具的参数设置

       使用bertool工具绘制出的理论误比特率曲线如图3.2所示,可以得出随着比特信噪比的增加,使用BPSK相干解调的理论误比特率逐渐减小。在比特信噪比为10dB时误比特率约为0.02327。

在这里插入图片描述

图3.2: 使用bertool工具绘制出的理论误码率曲线

       接着我根据推导出的单径瑞利信道中的使用BPSK相干解调的理论误比特率公式,即式(2.8),使用MATLAB编写代码来实现理论误比特率曲线的绘制。使用推导出的公式得出的理论误比特率曲线如图3.3所示。

在这里插入图片描述

图3.3: 使用推导出的公式得出的理论误码率曲线

根据图形也可以得出随着比特信噪比的增加,理论误码率在逐渐减小,当比特信噪比为10dB时误码率约为0.02327,该数值基本与使用bertool工具绘制出的理论误码率相同。

四、总结

       谢谢大家看到这里!这次的作业时隔将近一个月才写好,期间主要在搞其他任务,哈哈不过总算是写完一半了,这次主要是通过看经典书籍来消化知识的,对于第二问的信道估计也快解决了,应该很快就能做出来,还请读者们多多指教,谢谢!世上无难事,只要肯登攀。加油!

这里是本文的参考文献:
[1]:数字通信(第四版)
[2]:单径瑞利信道中的BPSK相干解调的(理论)误码率性能
[3]:MATLAB的bertool绘制误码率理论值与仿真值对比曲线
[4]:dB的换算

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值