【笔记】双因素ANOVA方差分析

双因素方差分析是一种统计方法,用于考察两个分类型变量(因素)对连续变量(特征值)均值的影响。它分析了每个因素单独及交互作用的效果,并通过F统计量和P值判断影响是否显著。计算涉及因素波动、交互项波动和误差项的比较。
摘要由CSDN通过智能技术生成

1.概念

        双因素方差分析(Two-way ANOVA):根据两个因素进行分组时,不同分组之间特征值的平均值是否相等。

        特征值:连续变量。

        因素:分类型变量。分类组别不一定大于3。

        探讨了1.根据第一个因素进行分组时,不同分组之间的特征值均值是否相等;

           2.根据第二个因素进行分组时,不同分组之间的特征值均值是否相等;

           3.两个因素之间的交互效应,是否对不同分组之间的特征值均值产生影响。

2.原理

        数据整体波动(sum of squares total, SST)=

        模型带来的波动(sum of squares model,SS model)

              (第一个因素所带来的波动(sum of squares first factor,SS first)

                +第二个因素所带来的波动(sum of squares second factor,  SS second)

               + 两个因素交互项所带来的波动(sum of squares interaction, SSI))

        +误差项所带来的波动(sum of squares error, SS error)

检验思路:

        第一步:计算出因素一波动、因素二波动、交互项波动和误差项波动;

        第二步:分别将因素一波动、因素二波动、交互项波动,与误差项波动进行比较;

        如果显著大于误差项波动,则响应的对特征值有影响。

3. 计算

        1.数据整体波动,同单因素方差分析。

        2.第一因素所带来的波动:类似只看第一因素的单因素组间波动。

        3.第二因素所带来的波动:类似只看第二因素的单因素组间波动。

        4.交互项的波动=模型波动-SS first -SS second

        5. 模型波动:综合第一因素和第二因素得到指标,进行组间波动计算。

        6.误差项波动=(个体取值-综合指标构造的组)所带来的波动

                             =整体波动-模型波动

构造F统计量:原理同单因素。

        因素一F统计量=(SS first/自由度 first)/(SS error/自由度error)

        因素二F统计量=(SS second/自由度 second)/(SS error/自由度error)

        交互项F统计量=(SS interaction/自由度 interaction)/(SS error/自由度error)

       df first:第一个因素的分组数-1

       df second:第二个因素的分组数-1

       df interaction:模型的自由度-df first-df second

                             =(df first*df second-1)-df first-df second

       df error=整体自由度-模型自由度

                   =(样本量-1)-(df first*df second-1)

       如果F统计量对应的P值小于0.05/0.01(查表),因素显著地影响特征值,通过查表,对应的p值。

        如果F统计量对应的P值大于0.05/0.01(查表),因素对特征值取值没有显著的影响。


【来源】为老师疯狂打Call!孩子终于听懂了。双因素方差分析(上)/Two way ANOVA/什么是双因素方差分析、双因素方差分析的思路_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值