1.概念
双因素方差分析(Two-way ANOVA):根据两个因素进行分组时,不同分组之间特征值的平均值是否相等。
特征值:连续变量。
因素:分类型变量。分类组别不一定大于3。
探讨了1.根据第一个因素进行分组时,不同分组之间的特征值均值是否相等;
2.根据第二个因素进行分组时,不同分组之间的特征值均值是否相等;
3.两个因素之间的交互效应,是否对不同分组之间的特征值均值产生影响。
2.原理
数据整体波动(sum of squares total, SST)=
模型带来的波动(sum of squares model,SS model)
(第一个因素所带来的波动(sum of squares first factor,SS first)
+第二个因素所带来的波动(sum of squares second factor, SS second)
+ 两个因素交互项所带来的波动(sum of squares interaction, SSI))
+误差项所带来的波动(sum of squares error, SS error)
检验思路:
第一步:计算出因素一波动、因素二波动、交互项波动和误差项波动;
第二步:分别将因素一波动、因素二波动、交互项波动,与误差项波动进行比较;
如果显著大于误差项波动,则响应的对特征值有影响。
3. 计算
1.数据整体波动,同单因素方差分析。
2.第一因素所带来的波动:类似只看第一因素的单因素组间波动。
3.第二因素所带来的波动:类似只看第二因素的单因素组间波动。
4.交互项的波动=模型波动-SS first -SS second
5. 模型波动:综合第一因素和第二因素得到指标,进行组间波动计算。
6.误差项波动=(个体取值-综合指标构造的组)所带来的波动
=整体波动-模型波动
构造F统计量:原理同单因素。
因素一F统计量=(SS first/自由度 first)/(SS error/自由度error)
因素二F统计量=(SS second/自由度 second)/(SS error/自由度error)
交互项F统计量=(SS interaction/自由度 interaction)/(SS error/自由度error)
df first:第一个因素的分组数-1
df second:第二个因素的分组数-1
df interaction:模型的自由度-df first-df second
=(df first*df second-1)-df first-df second
df error=整体自由度-模型自由度
=(样本量-1)-(df first*df second-1)
如果F统计量对应的P值小于0.05/0.01(查表),因素显著地影响特征值,通过查表,对应的p值。
如果F统计量对应的P值大于0.05/0.01(查表),因素对特征值取值没有显著的影响。
【来源】为老师疯狂打Call!孩子终于听懂了。双因素方差分析(上)/Two way ANOVA/什么是双因素方差分析、双因素方差分析的思路_哔哩哔哩_bilibili