钱币组合问题:(每种硬币不限次数)
假设我们有8种不同面值的硬币{1,2,5,10,20,50,100,200},用这些硬币组合够成一个给定的数值n。例如n=200,那么一种可能的组合方式为200 = 3 * 1 + 1*2 + 1*5 + 2*20 + 1 * 50 + 1 * 100. 问总过有多少种可能的组合方式?
解题思路:
给定一个数值sum,假设我们有m种不同类型的硬币{V1, V2, ..., Vm},如果要组合成sum,那么我们有
sum = x1 * V1 + x2 * V2 + ... + xm * Vm
求所有可能的组合数,就是求满足前面等值的系数{x1, x2, ..., xm}的所有可能个数。
[思路1] 当然我们可以采用暴力枚举,各个系数可能的取值无非是x1 = {0, 1, ..., sum / V1}, x2 = {0, 1, ..., sum/ V2}等等。这对于硬币种类数较小的题目还是可以应付的,比如华为和创新工厂的题目,但是复杂度也很高O(sum/V1 * sum/V2 * sum/V3 * ...)
[思路2] 从上面的分析中我们也可以这么考虑,我们希望用m种硬币构成sum,根据最后一个硬币Vm的系数的取值为无非有这么几种情况,xm分别取{0, 1, 2, ..., sum/Vm},换句话说,上面分析中的等式和下面的几个等式的联合是等价的。
sum = x1 * V1 + x2 * V2 + ... + 0 * Vm
sum = x1 * V1 + x2 * V2 + ... + 1 * Vm
sum = x1 * V1 + x2 * V2 + ... + 2 * Vm
...
sum = x1 * V1 + x2 * V2 + ... + K * Vm
其中K是该xm能取的最大数值K = sum / Vm。可是这又有什么用呢?不要急,我们先进行如下变量的定义:
dp[i][sum] = 用前i种硬币构成sum 的所有组合数。
那么题目的问题实际上就是求dp[m][sum],即用前m种硬币(所有硬币)构成sum的所有组合数。在上面的联合等式中:当xn=0时,有多少种组合呢? 实际上就是前i-1种硬币组合sum,有dp[i-1][sum]种! xn = 1 时呢,有多少种组合? 实际上是用前i-1种硬币组合成(sum - Vm)的组合数,有dp[i-1][sum -Vm]种; xn =2呢, dp[i-1][sum - 2 * Vm]种,等等。所有的这些情况加起来就是我们的dp[i][sum]。所以:
dp[i][sum] = dp[i-1][sum - 0*Vm] + dp[i-1][sum - 1*Vm]
+ dp[i-1][sum - 2*Vm] + ... + dp[i-1][sum - K*Vm]; 其中K = sum / Vm
换一种更抽象的数学描述就是:
递归公式
通过此公式,我们可以看到问题被一步步缩小,那么初始情况是什么呢?如果sum=0,那么无论有前多少种来组合0,只有一种可能,就是各个系数都等于0;
dp[i][0] = 1 // i = 0, 1, 2, ... , m
如果我们用二位数组表示dp[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。如果前0种硬币要组成sum,我们规定为dp[0][sum] = 0.
思路一:暴力穷举
每种硬币最多为N/coins,当n较小时,可以穷举出,注意本程序需要n>200,否则需要更改if判断的位置。(时间超时)
public static int cb = 0;
public static void brute(int[] coins,int n){
//有多少种币就有多少个for,此题共有7种
for(int i =0;i<=n/coins[0];i++){
for(int j =0;j<=n/coins[1];j++){
for(int k =0;k<=n/coins[2];k++){
for(int l =0;l<=n/coins[3];l++){
for(int m =0;m<=n/coins[4];m++){
for(int o =0;o<=n/coins[5];o++){
for(int p =0;p<=n/coins[6];p++){
if((coins[0]*i+coins[1]*j+coins[2]*k+coins[3]*l+coins[4]*m+coins[5]*o+coins[6]*p)==n){
cb++;
//System.out.println("1 2 5 10 20 50 100 各使用"+i+j+k+l+m+o+p+"种");
};
}
}
}
}
}
}
}
}
思路二:分支限界,深度遍历
去掉大于N的情况,注意每种硬币允许使用多次,且122与212、221属于同一种情况,所以限定每次使用的币种(coins[i])应大于等于上次使用的币种(coins[coinlocation]) (时间超时)
static int cc = 0; //统计总共的数目
static int[] sum = {0,0,0,0,0,0,0};//用于打印使用状况
/**
* @param coins 钱币列表
* @param n 总金额
* @param count 当前金额
* @param coinlocation 当前使用币种的下标
*/
public static void dfs(int[] coins,int n,int count,int coinlocation){
if(count==n){
cc++;
for(int i =0;i<sum.length;i++){
System.out.print("使用 "+coins[i]+"元:"+sum[i]+"个,");
}
System.out.println();
}else if(count > n){
return;
}else {
//遍历每一种硬币,允许1 2 2,不允许2,1,2
for(int i=coinlocation;i<coins.length;i++){
sum[i]++;
dfs(coins,n,count+coins[i],i);
sum[i]--;
}
}
}
思路三:动态规划
设d[i][sum]为使用第i中钱币时达到总金额sum的方案数目所以对于钱币i(coins[i]),可以不使用i、使用一个i、使用两个i......使用sum/coins[i]个i,即个,其中用d[i][0] = 1(只有一种方案,即什么币种也不用)d[0][i] =0(不用任何币种组成任意钱数,没有这种操作)。
public static void dynamic_prommgram(int[] coins,int n){
int[][] d = new int[coins.length+1][n+1];//length+1表示不适用任何币种、只使用1、只使用1 2 只使用1 2 3......等等,共length+1种情况,且n+1表示总计0、1.....至n元共n+1种情况
for(int i = 0;i<=coins.length;i++) d[i][0] = 1;
for(int i = 1 ;i<=coins.length;i++){//因为d[0][i]是0,所以i从1开始
for(int sum = 1;sum<=n;sum++){//由于d[i][0]==1,所以j从1开始
for(int k=0;k<=sum/coins[i-1];k++){//例如,使用面值为1时,对应的coins[]下标是i-1,逻辑上河实际上不是一致的
d[i][sum] +=d[i-1][sum-k*coins[i-1]];
}
}
}
System.out.println(d[coins.length][n]);
}
当然,程序可以简化为一维数组,二维数组的方式易于理解,但一维数组的方式更为简洁,因为d[i][sum]=ξ’d[i-1][X’]=ξ’ξ’d[i-2][X’’]=...即d[i-1]就是累加求和的中间量,所以可以直接使用一维数组表示:
public static void main(String[] args){
long[] d= new long[201];
d[0]=1;
int[] v={1,2,5,10,20,50,100
};
for(int i=0;i<7;i++){
for(int j=v[i];j<201;j++){
d[j]+=d[j-v[i]]; //相当于
}
}
System.out.println(200+"的组合方式有"+d[200]+"种");
}