浅谈狭义相对论

最近看了几篇狭义相对论的文章,发现很多人曲解狭义相对论,甚至有人质疑光速不变原理(理由是光速在空气中会变慢)。我希望这篇文章能够帮助你理解狭义相对论。

一、伽利略变换和牛顿运动力学定律

伽利略变换: v ⃗ = v ⃗ ′ + u ⃗ , a ⃗ = a ⃗ ′ , m = m ′ , F ⃗ = F ⃗ ′ \vec v=\vec v'+\vec u,\vec a=\vec a',m=m',\vec F=\vec F' v =v +u ,a =a ,m=m,F =F
伽利略变换阐述了物理量在不同惯性系中是如何变换的。
牛顿运动力学定律: F ⃗ = m a ⃗ \vec F=m\vec a F =ma
牛顿运动力学定律阐述了力、质量和加速度之间的关系。
这两个理论是经典物理学的基石,可以用来描述物体的运动规律。

二、相对性原理

如果一个物理定律配以一种变换后在任何惯性系中形式相同,那么称它满足相对性原理。(相对性原理所指对象是物理定律与物理量变换的组合)
显然,牛顿定律配以伽利略变换满足相对性原理。
而爱因斯坦提出的任何物理定律在任何惯性系下都成立也就是爱因斯坦相对性原理,是狭义相对论的两大公理之一。

三、麦克斯韦方程组

经过人们的不懈努力,最终由麦克斯韦提出了由四个方程组成的方程组,来描述所有电磁现象。
∇ × H ⃗ = J ⃗ + ∂ D ∂ t \nabla\times\vec H=\vec J+\frac{\partial D}{\partial t} ×H =J +tD ∇ × E ⃗ = − ∂ B ∂ t \nabla\times\vec E=-\frac{\partial B}{\partial t} ×E =tB ∇ ∙ B ⃗ = 0 \nabla\bullet\vec B=0 B =0 ∇ ∙ D ⃗ = ρ \nabla\bullet\vec D=\rho D =ρ这就是麦克斯韦方程组。

四、光速不变

通过计算,可以得出 c = 1 ε 0 μ 0 c=\frac{1}{\sqrt{\varepsilon_0\mu_0}} c=ε0μ0 1,其中 ε 0 , μ 0 \varepsilon_0,\mu_0 ε0,μ0均为常数,所以光速 c c c为常数。
但伽利略变换告诉我们,一个物体在不同惯性系下的速度不同。那么算出来的光速到底是以什么为参照系的呢?
首先,发生的矛盾的是以下理论:

  • 麦克斯韦方程组
  • 伽利略变换
  • 相对性原理

当时,人们已经认识到光是一种波。类比一下,水波的介质是水,水波的速度要以水为参照系;声波也需要介质,声速要以介质作为参照系。那么光的介质是什么呢?
于是科学家提出了一种叫以太的物质,这种物质遍布宇宙,光速就以这种物质为参照系。由此,人们抛弃了相对性原理(因为以太参照系成为了一个比其他惯性系更优越的惯性系)。

  • 麦克斯韦方程组
  • 伽利略变换
  • 相对性原理

可是既然以太是一种惯性系,那么就可以测定地球相对以太的运动速度。可是不管什么时候测量,地球相对以太的速度都为 0 0 0。这就和地球绕太阳做匀速圆周运动矛盾了。
就在这个时候,爱因斯坦说,伽利略变换是错误的,相对性原理是正确的。他提出,任何物理定律在任意惯性系下都成立。

  • 麦克斯韦方程组
  • 伽利略变换
  • 相对性原理

他继而建立了狭义相对论,解决了这一问题。

六、狭义相对论

首先,考虑追及问题。
追及问题
请问甲追上乙所需的时间是多少(地面参照系)?

设甲追上乙的时间是 t t t,则 S 1 = v 1 t , S 2 = v 2 t S_1=v_1t,S_2=v_2t S1=v1t,S2=v2t
而在地面参照系中, S 1 = S 2 + L S_1=S_2+L S1=S2+L,所以 t = L v 1 − v 2 t=\frac{L}{v_1-v_2} t=v1v2L
即甲追上乙所需的时间是 t = L v 1 − v 2 t=\frac{L}{v_1-v_2} t=v1v2L
讲这个问题是为了说明,追及问题不依赖于伽利略变换

在一个惯性系中,一个事件具有一个时空坐标 ( x , y , z , t ) (x,y,z,t) (x,y,z,t),同一个事件在不同的惯性系中有不同的坐标。我们要研究的就是如何将一个惯性系的时空坐标转换为另一个惯性系的时空坐标。

考虑一辆火车经过月台。在火车的中点 M M M处有一个激光发生器,向两边同时发射激光。火车两端 P , Q P,Q P,Q各有一个激光接收器。那么在火车参照系下两接收器是否同时接收到激光?在地面参照系下是否同时接收到激光?
火车月台问题
首先,在火车参照系下,两束激光以光速 c c c P , Q P,Q P,Q射去, t p = ∣ M P ∣ t c , t q = ∣ M Q ∣ t c t_p=\frac{|MP|_t}{c},t_q=\frac{|MQ|_t}{c} tp=cMPt,tq=cMQt,下标 t _t t表示火车参照系下的长度。因为 ∣ M P ∣ t = ∣ M Q ∣ t |MP|_t=|MQ|_t MPt=MQt,所以 t p = t q t_p=t_q tp=tq,因此在火车参照系下,同时接收到激光。

然后,在地面参照系下,两束激光运动时间问题可视作追及问题(相遇问题),根据之前的分析, t p = ∣ M P ∣ g c + u , t q = ∣ M P ∣ g c − u t_p=\frac{|MP|_g}{c+u},t_q=\frac{|MP|_g}{c-u} tp=c+uMPg,tq=cuMPg,显然, t p < t q t_p<t_q tp<tq,所以在地面参照系下,不同时接收到激光, P P P先接收到。

根据这道题的结论,动系(火车参照系)中同时发生的事件,在静系(地面参照系)中,运动方向靠前(P)的先发生,靠后的(Q)后发生。

七、尺缩效应

尺缩效应
设事件 A A A为物体左端运动到 x a x_a xa位置,事件 B B B为物体右端运动到 x b x_b xb位置,并且在地面参照系中, A A A B B B同时发生。
对于地面参照系来说,物体的长度为 x b − x a x_b-x_a xbxa,因为在一个时刻,物体的前端和后端分别在 x a , x b x_a,x_b xa,xb上。
对于物体参照系来说,地面参照系成为向左运动的动系,在动系中同时发生的事件 A , B A,B A,B,在静系中 B B B先发生,即右端到达 x b x_b xb的时候,左端还未到达 x a x_a xa,这个时候测出的长度大于 x b − x a x_b-x_a xbxa

这说明,一个物体沿运动方向上的长度,运动时会比静止时短,也就是说物体的长度在静止时最长,我们把静止时的长度称为固有长度

尺缩效应的公式为 L = L 0 1 − v 2 c 2 L=L_0\sqrt{1-\frac{v^2}{c^2}} L=L01c2v2

八、钟慢效应

钟慢效应
在物体右端到达 x x x后,过了时间 t t t,物体左端到达了 x x x,那么物体在地面参照系下的长度为 v t vt vt
那么物体在物体参照系下的长度如何呢?
在物体参照系下,尺向左以 v v v的速度运动,那么物体的长度为 v t ′ vt' vt
根据尺缩效应, v t < v t ′ vt<vt' vt<vt,所以 t < t ′ t<t' t<t

钟慢效应的公式为 Δ t ′ = Δ t 1 − v 2 c 2 \Delta t'=\frac{\Delta t}{\sqrt{1-\frac{v^2}{c^2}}} Δt=1c2v2 Δt Δ t \Delta t Δt表示两本地事件(发生在观察着所处位置的事件)的时间间隔(称为固有时), Δ t ′ \Delta t' Δt表示另一观察者观察到的两事件时间间隔。

例如在上述例子中,右端到达 x x x和左端到达 x x x两个事件在地面参照系中发生在同一位置(对于处在 x x x的观察者来说均为本地事件),所以固有时为在地面参照系中两事件发生的时间间隔,为 t t t

九、洛伦兹变换

有上述定性的分析还不够,建立相对论还需要定量的分析,用以取代伽利略变换。这种新变换就是洛伦兹变换。
洛伦兹变换
如图,两惯性系 S , S ′ S,S' S,S t = t ′ = 0 t=t'=0 t=t=0时完全重合, S ′ S' S S S S中沿 x x x轴正方向以速度 v v v运动。洛伦兹变换研究这两个惯性系间坐标的转换。
洛伦兹变换
现有一束光在 t = t ′ = 0 t=t'=0 t=t=0时射向在 S S S系中的顶点 P ( x , y , z ) P(x,y,z) P(x,y,z),射到 P P P的事件坐标为 ( x , y , z , t ) S , ( x ′ , y ′ , z ′ , t ′ ) S ′ (x,y,z,t)_S,(x',y',z',t')_{S'} (x,y,z,t)S,(x,y,z,t)S,先要研究两坐标的关系。

首先, y = y ′ , z = z ′ y=y',z=z' y=y,z=z,因为这两个物理量方向与运动方向垂直。

根据相对性原理,不同惯性系中物理定律的形式相同,所以长度必须等比扩大或缩小,即 x ′ = k ( x − v t ) , x = k ( x ′ + v t ′ ) x'=k(x-vt),x=k(x'+vt') x=k(xvt),x=k(x+vt) x ′ − k x = − k v t , x − k x ′ = k v t ′ x'-kx=-kvt,x-kx'=kvt' xkx=kvt,xkx=kvt ( x ′ − k x ) 2 − ( x − k x ′ ) 2 = k 2 v 2 ( t 2 − t ′ 2 ) (x'-kx)^2-(x-kx')^2=k^2v^2(t^2-t'^2) (xkx)2(xkx)2=k2v2(t2t2) ( k 2 − 1 ) ( x 2 − x ′ 2 ) = k 2 v 2 ( t 2 − t ′ 2 ) . . . ( 1 ) (k^2-1)(x^2-x'^2)=k^2v^2(t^2-t'^2)...^{(1)} (k21)(x2x2)=k2v2(t2t2)...(1)根据勾股定律, x 2 + y 2 + z 2 = c 2 t 2 , x ′ 2 + y ′ 2 + z ′ 2 = c 2 t ′ 2 x^2+y^2+z^2=c^2t^2,x'^2+y'^2+z'^2=c^2t'^2 x2+y2+z2=c2t2,x2+y2+z2=c2t2 x 2 − x ′ 2 = c 2 ( t 2 − t ′ 2 ) . . . ( 2 ) x^2-x'^2=c^2(t^2-t'^2)...^{(2)} x2x2=c2(t2t2)...(2) ( 2 ) (2) (2)代入 ( 1 ) (1) (1)得, ( k 2 − 1 ) c 2 ( t 2 − t ′ 2 ) = k 2 v 2 ( t 2 − t ′ 2 ) (k^2-1)c^2(t^2-t'^2)=k^2v^2(t^2-t'^2) (k21)c2(t2t2)=k2v2(t2t2) ( k 2 − 1 ) c 2 = k 2 v 2 (k^2-1)c^2=k^2v^2 (k21)c2=k2v2 k = 1 1 − v 2 c 2 . . . ( 4 ) k=\frac1{\sqrt{1-\frac{v^2}{c^2}}}...^{(4)} k=1c2v2 1...(4)代入 x ′ = k ( x − v t ) x'=k(x-vt) x=k(xvt)得, x ′ = x − v t 1 − v 2 c 2 . . . ( 3 ) x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}...^{(3)} x=1c2v2 xvt...(3) x = k ( x ′ + v t ′ ) x=k(x'+vt') x=k(x+vt)变形得 t ′ = x / k − x ′ v t'=\frac{x/k-x'}{v} t=vx/kx,将 ( 3 ) , ( 4 ) (3),(4) (3),(4)代入得, t ′ = x 1 − v 2 c 2 − x − v t 1 − v 2 c 2 v = x − v 2 c 2 x − x + v t v 1 − v 2 c 2 t'=\frac{x\sqrt{1-\frac{v^2}{c^2}}-\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}}{v}=\frac{x-\frac{v^2}{c^2}x-x+vt}{v\sqrt{1-\frac{v^2}{c^2}}} t=vx1c2v2 1c2v2 xvt=v1c2v2 xc2v2xx+vt整理得到, t ′ = t − v c 2 x 1 − v 2 c 2 t'=\frac{t-\frac v{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}} t=1c2v2 tc2vx最后,总结出洛伦兹变换表达式: { x ′ = x − v t 1 − v 2 c 2 y = y ′ z = z ′ t ′ = t − v c 2 x 1 − v 2 c 2 \left\{ \begin{array}{c} x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}} \\ y=y' \\ z=z' \\ t'=\frac{t-\frac v{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}} \end{array} \right. x=1c2v2 xvty=yz=zt=1c2v2 tc2vx

十、质速公式

质速公式描述了质量随速度的改变而改变,其表达式如下: m ′ = m 1 − v 2 c 2 m'=\frac m{\sqrt{1-\frac{v^2}{c^2}}} m=1c2v2 m下面我们就证明一下这个公式。
质速公式
S S S系中, A , B A,B A,B两全同粒子以角度 θ \theta θ速度 u u u射向原点,发生弹性碰撞后以角度 θ \theta θ射出。
根据动量守恒,射出后两球方向相反,速度相同。根据能量守恒,射出后速度为 u u u
质速公式
S ′ S' S系相对于 S S S系沿 x x x轴正方向以速度 u cos ⁡ θ u\cos\theta ucosθ运动,则 A A A S ′ S' S系中没有水平速度。
根据洛伦兹变换, t ′ = ( t − v 2 c 2 t ) / 1 − v 2 c 2 , y ′ = y t'=(t-\frac{v^2}{c^2}t)/\sqrt{1-\frac{v^2}{c^2}},y'=y t=(tc2v2t)/1c2v2 ,y=y,所以 v A y ′ = v A x 1 − v 2 c 2 1 − v 2 c 2 = u sin ⁡ θ 1 − ( w cos ⁡ θ ) 2 c 2 1 − ( w cos ⁡ θ ) 2 c 2 v'_{Ay}=\frac{v_{Ax}\sqrt{1-\frac{v^2}{c^2}}}{1-\frac{v^2}{c^2}}=\frac{u\sin\theta\sqrt{1-\frac{(w\cos\theta)^2}{c^2}}}{1-\frac{(w\cos\theta)^2}{c^2}} vAy=1c2v2vAx1c2v2 =1c2(wcosθ)2usinθ1c2(wcosθ)2 B B B使用同样的分析得到, v B y ′ = u sin ⁡ θ 1 − ( w cos ⁡ θ ) 2 c 2 1 + ( w cos ⁡ θ ) 2 c 2 v'_{By}=\frac{u\sin\theta\sqrt{1-\frac{(w\cos\theta)^2}{c^2}}}{1+\frac{(w\cos\theta)^2}{c^2}} vBy=1+c2(wcosθ)2usinθ1c2(wcosθ)2 根据动量守恒定律, 2 m A ′ v A y ′ = 2 m B ′ v B y ′ 2m'_Av'_{Ay}=2m'_Bv'_{By} 2mAvAy=2mBvBy,所以 m B ′ m A ′ = 1 + ( w cos ⁡ θ ) 2 c 2 1 − ( w cos ⁡ θ ) 2 c 2 = c 2 + ( w cos ⁡ θ ) 2 c 2 − ( w cos ⁡ θ ) 2 \frac{m'_B}{m'_A}=\frac{1+\frac{(w\cos\theta)^2}{c^2}}{1-\frac{(w\cos\theta)^2}{c^2}}=\frac{c^2+(w\cos\theta)^2}{c^2-(w\cos\theta)^2} mAmB=1c2(wcosθ)21+c2(wcosθ)2=c2(wcosθ)2c2+(wcosθ)2 θ → 0 \theta\rightarrow0 θ0,则 A A A S ′ S' S系中可视作静止, B B B可视作在水平方向上匀速运动,即 m A ′ m'_A mA为静质量,只需计算出 m B ′ m'_B mB v B x ′ v'_{Bx} vBx,即可。 m B ′ m A ′ = c 2 + w 2 c 2 − w 2 \frac{m'_B}{m'_A}=\frac{c^2+w^2}{c^2-w^2} mAmB=c2w2c2+w2而根据洛伦兹变换, v B x ′ = ∣ u B x − w cos ⁡ θ 1 − w cos ⁡ θ c 2 u B x ∣ = 2 w 1 + w 2 c 2 v'_{Bx}=\left|\frac{u_{Bx}-w\cos\theta}{1-\frac{w\cos\theta}{c^2}u_{Bx}}\right|=\frac{2w}{1+\frac{w^2}{c^2}} vBx=1c2wcosθuBxuBxwcosθ=1+c2w22w w = c 2 u B x ′ ( − 1 + 1 − u B x ′ 2 c 2 ) w=\frac{c^2}{u'_{Bx}}\left(-1+\sqrt{1-\frac{{u'_{Bx}}^2}{c^2}}\right) w=uBxc21+1c2uBx2 代入得 m B ′ = m A ′ 1 − u B x ′ 2 c 2 m'_B=\frac{m'_A}{\sqrt{1-\frac{{u'_{Bx}}^2}{c^2}}} mB=1c2uBx2 mA m ′ = m 1 − v 2 c 2 m'=\frac m{\sqrt{1-\frac{v^2}{c^2}}} m=1c2v2 m

十一、质能方程

考虑对静质量为 m 0 m_0 m0物体做功使之加速到 v v v的过程。 E k = ∫ 0 S F   d S = ∫ 0 t d ( m v ) d t v   d t = ∫ 0 v v   d ( m 0 v 1 − v 2 c 2 ) E_k=\int_0^S{F\space dS}=\int_0^t{\frac{d(mv)}{dt}v\space dt}=\int_0^v{v\space d\left(\frac{m_0v}{\sqrt{1-\frac{v^2}{c^2}}}\right)} Ek=0SF dS=0tdtd(mv)v dt=0vv d1c2v2 m0v v / c = sin ⁡ θ ( 0 ≤ θ < π 2 ) v/c=\sin\theta(0\le\theta<\frac\pi2) v/c=sinθ(0θ<2π),则 E k = ∫ 0 arcsin ⁡ v c c sin ⁡ θ   d ( m 0 c sin ⁡ θ cos ⁡ θ ) = m 0 c 2 ∫ 0 arcsin ⁡ v c sin ⁡ θ sec ⁡ 2 θ   d θ E_k=\int_0^{\arcsin\frac v c}{c\sin\theta\space d\left(\frac{m_0c\sin\theta}{\cos\theta}\right)}=m_0c^2\int_0^{\arcsin\frac v c}{\sin\theta\sec^2\theta\space d\theta} Ek=0arcsincvcsinθ d(cosθm0csinθ)=m0c20arcsincvsinθsec2θ dθ x = c o s θ x=cos\theta x=cosθ,则 E k = m 0 c 2 ∫ 0 1 − v 2 c 2 − d x x 2 = m 0 c 2 1 x ∣ 0 1 − v 2 c 2 = m 0 c 2 1 − v 2 c 2 − m 0 c 2 = m c 2 − m 0 c 2 E_k=m_0c^2\int_0^{\sqrt{1-\frac{v^2}{c^2}}}{\frac{-dx}{x^2}}=m_0c^2\left.\frac1x\right|_0^{\sqrt{1-\frac{v^2}{c^2}}}=\frac{m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}}-m_0c^2=mc^2-m_0c^2 Ek=m0c201c2v2 x2dx=m0c2x101c2v2 =1c2v2 m0c2m0c2=mc2m0c2 E ( m ) − E ( m 0 ) = m c 2 − m 0 c 2 E(m)-E(m_0)=mc^2-m_0c^2 E(m)E(m0)=mc2m0c2,显然 E ( m ) = k m E(m)=km E(m)=km(你可以考虑把两个物体拼在一起, E ( m 1 + m 2 ) = E ( m 1 ) + E ( m 2 ) E(m_1+m_2)=E(m_1)+E(m_2) E(m1+m2)=E(m1)+E(m2)),所以 k = c 2 k=c^2 k=c2,所以 E = m c 2 E=mc^2 E=mc2

总结

相对论的核心是洛伦兹变换,洛伦兹变换与伽利略变换的本质区别是,伽利略变换认为所有惯性系的单位长度相同,时间相同,而洛伦兹变换认为惯性系之间会按比例缩放,时间也不同。只有抛弃绝对的空间、时间观才能真正理解相对论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值