原文地址:Redis热点数据问题怎么解决
一、Redis 热点数据问题,一般都是什么原因引起的?
- 高访问量的 Key,也就是热 key,根据过去的维护经验一个 key 访问的 QPS 超过 1000 就要高度关注了,比如热门商品,热门话题等。
- 大 Value,有些 key 访问 QPS 虽然不高,但是由于 value 很大,造成网卡负载较大,网卡流量被打满,单台机器可能出现千兆 / 秒,IO 故障。
- 热点 Key + 大 Value 同时存在,服务器杀手。
二、热点 key 或大 Value 会造成哪些故障呢?
- 数据倾斜问题:大 Value 会导致集群不同节点数据分布不均匀,造成数据倾斜问题,大量读写比例非常高的请求都会落到同一个 redis server 上,该 redis 的负载就会严重升高,容易打挂。
- QPS 倾斜:分片上的 QPS 不均。
- 大 Value 会导致 Redis 服务器缓冲区不足,造成 get 超时。
- 由于 Value 过大,导致机房网卡流量不足。
- Redis 缓存失效导致数据库层被击穿的连锁反应。
三、热点数据问题你是如何准确定位的?
1. 提前获知法:
根据业务,人肉统计 or 系统统计可能会成为热点的数据,如,促销活动商品,热门话题,节假日话题,纪念日活动等。
2. Redis 客户端收集法:
调用端通过计数的方式统计 key 的请求次数,但是无法预知 key 的个数,代码侵入性强。
public Connection sendCommand(final ProtocolCommand cmd, final byte[]... args) {
//从参数中获取key
String key = analysis(args);
//计数
counterKey(key);
//ignore
}
3. Redis 集群代理层统计:
像 Twemproxy,codis 这些基于代理的 Redis 分布式架构,统一的入口,可以在 Proxy 层 做收集上报,但是缺点很明显,并非所有的 Redis 集群架构都有 proxy。
4. Redis 服务端收集:
监控 Redis 单个分片的 QPS,发现 QPS 倾斜到一定程度的节点进行 monitor,获取热点 key, Redis 提供了 monitor 命令,可以统计出一段时间内的某 Redis 节点上的所有命令,分析热点 key,在高并发条件下,会存在内存暴涨和 Redis 性能的隐患,所以此种方法适合在短时间内使用;同样只能统计一个 Redis 节点的热点 key,对于集群需要汇总统计,业务角度讲稍微麻烦一点。
5. 修改 Redis 源代码:
Redis4.0 为我们带来了许多新特性,其中便包括基于 LFU 的热点 key 发现机制,有了这个新特性,我们就可以在此基础上实现热点 key 的统计。
四、如何解决热点数据问题?
-
key 拆分:
如果当前 key 的类型是一个二级数据结构,例如哈希类型。如果该哈希元素个数较多,可以考虑将当前 hash 进行拆分,这样该热点 key 可以拆分为若干个新的 key 分布到不同 Redis 节点上,从而减轻压力 -
迁移热点 key:
以 Redis Cluster 为例,可以将热点 key 所在的 slot 单独迁移到一个新的 Redis 节点上,这样这个热点 key 即使 QPS 很高,也不会影响到整个集群的其他业务,还可以定制化开发,热点 key 自动迁移到独立节点上,这种方案也较多副本。 -
热点 key 限流:
对于读命令我们可以通过迁移热点 key 然后添加从节点来解决,对于写命令我们可以通过单独针对这个热点 key 来限流。 -
增加本地缓存:
对于数据一致性不是那么高的业务,可以将热点 key 缓存到业务机器的本地缓存中,因为是业务端的本地内存中,省去了一次远程的 IO 调用。但是当数据更新时,可能会造成业务和 Redis 数据不一致。
五、Redis 支持丰富的数据类型,那么这些数据类型存储的大 Value 如何解决?
-
一个较大的 key-value 拆分成几个 key-value ,将操作压力平摊到多个 redis 实例中,降低对单个 redis 的 IO 影响
-
将分拆后的几个 key-value 存储在一个 hash 中,每个 field 代表一个具体的属性,使用 hget,hmget 来获取部分的 value,使用 hset,hmset 来更新部分属性。
-
hash、set、zset、list 中存储过多的元素
类似于场景一中的第一个做法,可以将这些元素分拆。
以 hash 为例,原先的正常存取流程是:
hget(hashKey, field);
hset(hashKey, field, value)
现在,固定一个桶的数量,比如 10000,每次存取的时候,先在本地计算 field 的 hash 值,模除 10000,确定该 field 落在哪个 key 上,核心思想就是将 value 打散,每次只 get 你需要的。
newHashKey = hashKey + (hash(field) % 10000);
hset(newHashKey, field, value);
hget(newHashKey, field)