记一次pytorch的安装镜像选择

前提

已经安装好了anacoda

一,打开官网选择合适的torch版本

torch网址

由于我的电脑只有核显所以选择了CPU版本
在这里插入图片描述
复制RUN里面生成的pip命令在cmd里面打开就行了,但会遇到下载速度很慢的问题所以这时我们可以修改后面的服务器地址,
只取-f 前的这一段

pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio===0.8.1

在后面加上豆瓣镜像尾椎

-f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.doubanio.com/simple

组合起来就是

pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.doubanio.com/simple
### 如何在PyTorch Docker镜像中使用pip安装包 #### 使用`get-pip.py`更新pip 为了确保Docker镜像中的pip是最新的,并且保持其精简,可以采用通过下载并运行`get-pip.py`的方式来进行pip的更新。此脚本可以从官方提供的链接获取[^1]。 ```bash RUN curl -O https://bootstrap.pypa.io/get-pip.py && \ python3 get-pip.py ``` 这段命令首先从网络位置下载`get-pip.py`到工作目录内,接着利用Python解释器执行该文件完成pip工具本身的升级或安装过程。 #### 编写自定义依赖项列表 对于特定项目所需的额外库,推荐的做法是在构建阶段之前准备一份名为`requirements.txt`的文本文件,在其中列明所有必要的Python软件包及其版本号。例如: ```plaintext numpy>=1.20.0,<2.0.0 pandas>=1.3.0,<2.0.0 scikit-learn>=0.24.0,<1.0.0 -f https://download.pytorch.org/whl/cpu/torch_stable.html torch==2.1.0+cpu -geometric.com/whl/torch-2.1.0+cpu.html torch_geometric ``` 上述配置指定了几个常用的科学计算库以及CPU版的PyTorch和相关组件的具体版本范围,确保了环境的一致性和可重复性[^3]。 #### 安装指定于`requirements.txt`内的Python包 一旦有了详细的依赖清单,就可以借助pip一次性批量处理这些需求。通常情况下,这部分逻辑会被加入到项目的Dockerfile之中作为一条或多条指令被执行: ```dockerfile COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt ``` 这里先是复制本地存在的`requirements.txt`至容器的工作空间里,随后调用pip依据录的内容逐一解析并部署相应的资源。选项`--no-cache-dir`用于防止缓存占用过多磁盘空间,有助于减小最终生成的镜像尺寸。 #### 验证安装成果 最后一步是确认新引入的功能模块能否正常运作。可以通过简单的测试代码片段来检验关键部分是否按预期加载无误: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 以上程序段落尝试导入核心库并输出当前使用的PyTorch版本信息连同CUDA可用状态报告给用户查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值